A185414 Square array, read by antidiagonals, used to recursively calculate the zigzag numbers A000111.
1, 1, 1, 2, 2, 1, 5, 5, 3, 1, 16, 16, 10, 4, 1, 61, 61, 39, 17, 5, 1, 272, 272, 176, 80, 26, 6, 1, 1385, 1385, 903, 421, 145, 37, 7, 1, 7936, 7936, 5200, 2464, 880, 240, 50, 8, 1, 50521, 50521, 33219, 15917, 5825, 1661, 371, 65, 9, 1
Offset: 1
Examples
The array begins: 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...; 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, ...; 2, 5, 10, 17, 26, 37, 50, 65, 82, ...; 5, 16, 39, 80, 145, 240, 371, 544, 765, ...; 16, 61, 176, 421, 880, 1661, 2896, 4741, 7376, ...; 61, 272, 903, 2464, 5825, 12336, 23947, 43328, 73989, ...; 272, 1385, 5200, 15917, 41936, 98377, 210320, 416765, ...; 1385, 7936, 33219, 112640, 326965, 840960, 1962191, ...; ... Examples of the recurrence: T(4,4) = 80 = (3*T(3,3) + 5*T(3,5))/2 = (3*10 + 5*26)/2; T(5,3) = 176 = (2*T(4,2) + 4*T(4,4))/2 = (2*16 + 4*80)/2; T(6,2) = 272 = (1*T(5,1) + 3*T(5,3))/2 = (1*16 + 3*176)/2.
Programs
-
Maple
#A185414 Z := proc(n,x) description 'zigzag polynomials A147309' if n = 0 return 1 else return 1/2*x*(Z(n-1,x-1)+Z(n-1,x+1)) end proc: # values of Z(n,x)/x for n from 1 to 10 do seq(Z(n,k)/k, k = 1..10); end do;
-
PARI
{T(n,k)=if(n==1,1,((k-1)*T(n-1,k-1)+(k+1)*T(n-1,k+1))/2)} for(n=1,10, for(k=1,10, print1(T(n,k),", ")); print(""))
Formula
(1)... T(n,k) = Z(n,k)/k with Z(n,x) the zigzag polynomials described in A147309.
Comments