A185418 Square array, read by antidiagonals, used to recursively calculate the Springer numbers A001586.
1, 1, 1, 3, 3, 1, 11, 11, 5, 1, 57, 57, 27, 7, 1, 361, 361, 175, 51, 9, 1, 2763, 2763, 1353, 413, 83, 11, 1, 24611, 24611, 12125, 3801, 819, 123, 13, 1, 250737, 250737, 123987, 39487, 8857, 1441, 171, 15, 1, 2873041, 2873041, 1424215, 458331, 105489, 18057, 2327, 227, 17, 1
Offset: 0
Examples
Square array begins n\k|.....0......1.......2.......3........4........5........6 ============================================================ ..0|.....1......1.......1.......1........1........1........1 ..1|.....1......3.......5.......7........9.......11.......13 ..2|.....3.....11......27......51.......83......123......171 ..3|....11.....57.....175.....413......819.....1441.....2327 ..4|....57....361....1353....3801.....8857....18057....33321 ..5|...361...2763...12125...39487...105489...244211...507013 ..6|..2763..24611..123987..458331..1379003..3569523..8229891 .. Examples of recurrence relation: T(4,3) = 3801 = 3*T(3,2) + 4*T(3,4) = 3*175 + 4*819; T(5,1) = 2763 = 1*T(4,0)+ 2*T(4,2) = 1*57 + 2*1353.
Programs
-
Maple
# A185418 S := proc(n, x) option remember; description `polynomials S(n, x)`; if n = 0 then 1 else x*S(n-1,x-1)+(x+1)*S(n-1,x+1) end if end proc: for n from 0 to 10 do seq(S(n, k), k = 0..10) end do;
-
Mathematica
T[n_, k_] := T[n, k] = If[n<0 || k<0, 0, If[n == 0, 1, k T[n-1, k-1] + (k+1)*T[n-1, k+1]]]; Table[T[n-k, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Apr 22 2021 *)
-
PARI
{T(n,k)=if(n<0||k<0,0,if(n==0,1,k*T(n-1,k-1)+(k+1)*T(n-1,k+1)))}
Comments