A185420 Square array, read by antidiagonals, used to recursively calculate the number of minimax trees A080795.
1, 4, 1, 20, 5, 1, 128, 32, 6, 1, 1024, 256, 46, 7, 1, 9856, 2464, 432, 62, 8, 1, 110720, 27680, 4784, 662, 80, 9, 1, 1421312, 355328, 60864, 8224, 952, 100, 10, 1, 20525056, 5131264, 873664, 116128, 13048, 1308, 122, 11, 1
Offset: 1
Examples
Square array begins n\k|......1.......2.......3........4.......5.........6 ====================================================== ..1|......1.......1.......1........1........1........1 ..2|......4.......5.......6........7........8........9 ..3|.....20......32......46.......62.......80......100 ..4|....128.....256.....432......662......952.....1308 ..5|...1024....2464....4784.....8224....13048....19544 ..6|...9856...27680...60864...116128...201632...327096 ..7|.110720..355328..873664..1833728..3460640..6046720 .. Examples of recurrence relation: T(4,3) = 432 = 8*T(3,4) - 2*T(3,2) = 8*62 - 2*32; T(6,2) = 27680 = 6*T(5,3) - 1*T(5,1) = 6*4784 - 1*1024.
Programs
-
Maple
#A185420 M := proc(n,x) option remember; description 'minimax polynomials M(n,x)' if n = 0 return 1 else return x*(2*M(n-1,x+1)-M(n-1,x-1)) end proc: for n from 1 to 10 do seq(M(n,k)/k, k = 1..10); end do;
-
Mathematica
M[n_, x_] := M[n, x] = If[n == 0, 1, x (2 M[n - 1, x + 1] - M[n - 1, x - 1])]; T[n_, k_] := M[n, k]/k; Table[T[d - k + 1, k], {d, 1, 9}, {k, 1, d}] // Flatten (* Jean-François Alcover, Sep 24 2022 *)
-
PARI
{T(n,k)=if(n<1||k<1,0,if(n==1,1,(2*k+2)*T(n-1,k+1)-(k-1)*T(n-1,k-1)))}
Comments