cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A185420 Square array, read by antidiagonals, used to recursively calculate the number of minimax trees A080795.

Original entry on oeis.org

1, 4, 1, 20, 5, 1, 128, 32, 6, 1, 1024, 256, 46, 7, 1, 9856, 2464, 432, 62, 8, 1, 110720, 27680, 4784, 662, 80, 9, 1, 1421312, 355328, 60864, 8224, 952, 100, 10, 1, 20525056, 5131264, 873664, 116128, 13048, 1308, 122, 11, 1
Offset: 1

Views

Author

Peter Bala, Jan 30 2011

Keywords

Comments

The table entries T(n,k), for n,k>=1, are defined by means of the recurrence relation
(1)... T(n+1,k) = (2*k+2)*T(n,k+1)-(k-1)*T(n,k-1),
with boundary condition T(1,k) = 1.
The first column of the table gives A080795.
For similarly defined tables used to calculate the zigzag numbers A000111 and the Springer numbers A001586 see A185414 and A185418, respectively.
See also A185416.

Examples

			Square array begins
n\k|......1.......2.......3........4.......5.........6
======================================================
..1|......1.......1.......1........1........1........1
..2|......4.......5.......6........7........8........9
..3|.....20......32......46.......62.......80......100
..4|....128.....256.....432......662......952.....1308
..5|...1024....2464....4784.....8224....13048....19544
..6|...9856...27680...60864...116128...201632...327096
..7|.110720..355328..873664..1833728..3460640..6046720
..
Examples of recurrence relation:
T(4,3) = 432 = 8*T(3,4) - 2*T(3,2) = 8*62 - 2*32;
T(6,2) = 27680 = 6*T(5,3) - 1*T(5,1) = 6*4784 - 1*1024.
		

Crossrefs

Programs

  • Maple
    #A185420
    M := proc(n,x) option remember;
    description 'minimax polynomials M(n,x)'
    if n = 0
    return 1
    else return
    x*(2*M(n-1,x+1)-M(n-1,x-1))
    end proc:
    for n from 1 to 10 do
    seq(M(n,k)/k, k = 1..10);
    end do;
  • Mathematica
    M[n_, x_] := M[n, x] = If[n == 0, 1, x (2 M[n - 1, x + 1] - M[n - 1, x - 1])];
    T[n_, k_] := M[n, k]/k;
    Table[T[d - k + 1, k], {d, 1, 9}, {k, 1, d}] // Flatten (* Jean-François Alcover, Sep 24 2022 *)
  • PARI
    {T(n,k)=if(n<1||k<1,0,if(n==1,1,(2*k+2)*T(n-1,k+1)-(k-1)*T(n-1,k-1)))}

Formula

(1)... T(n,k) = M(n,k)/k with M(n,x) the polynomials described in A185419.
(2)... First column: T(n,1) = A080795(n).
(3)... Second column: T(n,2) = (1/4)*A080795(n+1).