A185442 Triangle T(n,k), n>=1, 0<=k<=2n(n+1), read by rows: row n gives the coefficients of the chromatic polynomial of the Aztec diamond graph of order n, highest powers first.
1, -4, 6, -3, 0, 1, -16, 120, -555, 1755, -3978, 6588, -7965, 6885, -4050, 1458, -243, 0, 1, -36, 630, -7127, 58476, -370128, 1876942, -7818056, 27208798, -80059990, 200769740, -431267475, 795531116, -1260437072, 1711682175, -1983112401, 1945239399, -1597006926, 1079055243, -585362106, 245489859, -74816136, 14762007, -1416933, 0
Offset: 1
Examples
2 example graphs: o-o . | | . o-o-o-o . | | | | . o-o o-o-o-o . | | | | . o-o o-o Order: 1 2 Vertices: 4 12 Edges: 4 16 The Aztec diamond graph of order 1 is the cycle graph C_4 with chromatic polynomial q^4 -4*q^3 +6*q^2 -3*q => [1, -4, 6, -3, 0]. Triangle T(n,k) begins: 1, -4, 6, -3, 0; 1, -16, 120, -555, 1755, -3978, 6588, ... 1, -36, 630, -7127, 58476, -370128, 1876942, ... 1, -64, 2016, -41639, 633851, -7578762, 74074918, ... 1, -100, 4950, -161659, 3917248, -75096624, 1186008180, ... 1, -144, 10296, -487283, 17170275, -480406458, 11115470152, ... ...
Links
- Alois P. Heinz, Rows n = 1..7, flattened
- Propp, J., Enumeration of matchings: problems and progress, in L. J. Billera et al. (eds.), New Perspectives in Algebraic Combinatorics
- Eric Weisstein's World of Mathematics, Aztec Diamond
- Eric Weisstein's World of Mathematics, Chromatic Polynomial
- Wikipedia, Chromatic Polynomial
Comments