cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A182368 Triangle T(n,k), n>=1, 0<=k<=n^2, read by rows: row n gives the coefficients of the chromatic polynomial of the square grid graph G_(n,n), highest powers first.

Original entry on oeis.org

1, 0, 1, -4, 6, -3, 0, 1, -12, 66, -216, 459, -648, 594, -323, 79, 0, 1, -24, 276, -2015, 10437, -40614, 122662, -292883, 557782, -848056, 1022204, -960627, 682349, -346274, 112275, -17493, 0, 1, -40, 780, -9864, 90798, -647352, 3714180, -17590911, 69997383
Offset: 1

Views

Author

Alois P. Heinz, Apr 26 2012

Keywords

Comments

The square grid graph G_(n,n) has n^2 = A000290(n) vertices and 2*n*(n-1) = A046092(n-1) edges. The chromatic polynomial of G_(n,n) has n^2+1 = A002522(n) coefficients.

Examples

			3 example graphs:                          o---o---o
.                                          |   |   |
.                             o---o        o---o---o
.                             |   |        |   |   |
.                o            o---o        o---o---o
Graph:        G_(1,1)        G_(2,2)        G_(3,3)
Vertices:        1              4              9
Edges:           0              4             12
The square grid graph G_(2,2) is the cycle graph C_4 with chromatic polynomial q^4 -4*q^3 +6*q^2 -3*q => row 2 = [1, -4, 6, -3, 0].
Triangle T(n,k) begins:
  1,    0;
  1,   -4,     6,      -3,        0;
  1,  -12,    66,    -216,      459,       -648,         594, ...
  1,  -24,   276,   -2015,    10437,     -40614,      122662, ...
  1,  -40,   780,   -9864,    90798,    -647352,     3714180, ...
  1,  -60,  1770,  -34195,   486210,   -5421612,    49332660, ...
  1,  -84,  3486,  -95248,  1926585,  -30755376,   403410654, ...
  1, -112,  6216, -227871,  6205479, -133865298,  2382122274, ...
  1, -144, 10296, -487280, 17169852, -480376848, 11114098408, ...
  ...
		

Crossrefs

Columns 0, 1 give: A000012, (-1)*A046092(n-1).
Sums of absolute values of row elements give: A080690(n).

Programs

  • Mathematica
    Reverse /@ CoefficientList[Table[ChromaticPolynomial[GridGraph[{n, n}], x], {n, 5}], x] // Flatten (* Eric W. Weisstein, May 01 2017 *)

A193277 Triangle T(n,k), n>=1, 0<=k<=(3+3^n)/2, read by rows: row n gives the coefficients of the chromatic polynomial of the Sierpinski gasket graph S_n, highest powers first.

Original entry on oeis.org

1, -3, 2, 0, 1, -9, 32, -56, 48, -16, 0, 1, -27, 339, -2625, 14016, -54647, 160663, -362460, 631828, -848736, 866640, -653248, 343744, -112896, 17408, 0, 1, -81, 3204, -82476, 1553454, -22823259, 272286183, -2711405961, 22990179324
Offset: 1

Views

Author

Alois P. Heinz, Jul 20 2011

Keywords

Comments

The Sierpinski graph S_n has (3+3^n)/2 vertices and 3^n edges. The chromatic polynomial of S_n has (3+3^n)/2+1 coefficients.

Examples

			3 example graphs:                        o
.                                       / \
.                                      o---o
.                                     / \ / \
.                       o            o---o---o
.                      / \          / \     / \
.            o        o---o        o---o   o---o
.           / \      / \ / \      / \ / \ / \ / \
.          o---o    o---o---o    o---o---o---o---o
Graph:      S_1        S_2              S_3
Vertices:    3          6                15
Edges:       3          9                27
The Sierpinski graph S_1 is equal to the cycle graph C_3 with chromatic polynomial q^3 -3*q^2 +2*q => [1, -3, 2, 0].
Triangle T(n,k) begins:
1,    -3,       2,           0;
1,    -9,      32,         -56,           48,              -16,  ...
1,   -27,     339,       -2625,        14016,           -54647,  ...
1,   -81,    3204,      -82476,      1553454,        -22823259,  ...
1,  -243,   29295,    -2336013,    138604878,      -6526886841,  ...
1,  -729,  265032,   -64069056,  11585834028,   -1671710903793,  ...
1, -2187, 2389419, -1738877625, 948268049436, -413339609377179,  ...
		

Crossrefs

A212084 Triangle T(n,k), n>=0, 0<=k<=2n, read by rows: row n gives the coefficients of the chromatic polynomial of the complete bipartite graph K_(n,n), highest powers first.

Original entry on oeis.org

1, 1, -1, 0, 1, -4, 6, -3, 0, 1, -9, 36, -75, 78, -31, 0, 1, -16, 120, -524, 1400, -2236, 1930, -675, 0, 1, -25, 300, -2200, 10650, -34730, 75170, -102545, 78610, -25231, 0, 1, -36, 630, -6915, 52080, -279142, 1074822, -2942445, 5552680, -6796926, 4787174
Offset: 0

Views

Author

Alois P. Heinz, Apr 30 2012

Keywords

Comments

The complete bipartite graph K_(n,n) has 2n vertices and n^2 = A000290(n) edges. The chromatic polynomial of K_(n,n) has 2n+1 = A005408(n) coefficients.

Examples

			3 example graphs:                     +-----------+
.                 o        o   o      o   o   o   |
.                 |        |\ /|      |\ /|\ /|\ /
.                 |        | X |      | X | X | X
.                 |        |/ \|      |/ \|/ \|/ \
.                 o        o   o      o   o   o   |
.                                     +-----------+
Graph:         K_(1,1)    K_(2,2)      K_(3,3)
Vertices:         2          4            6
Edges:            1          4            9
The complete bipartite graph K_(2,2) is the cycle graph C_4 with chromatic polynomial q^4 -4*q^3 +6*q^2 -3*q => row 2 = [1, -4, 6, -3, 0].
Triangle T(n,k) begins:
  1;
  1,  -1,   0;
  1,  -4,   6,    -3,     0;
  1,  -9,  36,   -75,    78,     -31,       0;
  1, -16, 120,  -524,  1400,   -2236,    1930,     -675, ...
  1, -25, 300, -2200, 10650,  -34730,   75170,  -102545, ...
  1, -36, 630, -6915, 52080, -279142, 1074822, -2942445, ...
  ...
		

Crossrefs

Columns k=0-2 give: A000012, (-1)*A000290, A083374.
Row sums and last elements of rows give: A000007.
Row lengths give: A005408.
Sums of absolute values of row elements give: A048163(n+1).
T(n,2n-1) = (-1)*A092552(n).

Programs

  • Maple
    P:= n-> add(Stirling2(n, k) *mul(q-i, i=0..k-1) *(q-k)^n, k=0..n):
    T:= n-> seq(coeff(P(n), q, 2*n-k), k=0..2*n):
    seq(T(n), n=1..8);

Formula

T(n,k) = [q^(2n-k)] Sum_{j=0..n} (q-j)^n * S2(n,j) * Product_{i=0..j-1} (q-i).

Extensions

T(0,0)=1 prepended by Alois P. Heinz, May 03 2024

A193283 Triangle T(n,k), n>=1, 0<=k<=n*(n+1)/2, read by rows: row n gives the coefficients of the chromatic polynomial of the n X n X n triangular grid, highest powers first.

Original entry on oeis.org

1, 0, 1, -3, 2, 0, 1, -9, 32, -56, 48, -16, 0, 1, -18, 144, -672, 2016, -4031, 5368, -4584, 2272, -496, 0, 1, -30, 419, -3612, 21477, -93207, 304555, -761340, 1463473, -2152758, 2385118, -1929184, 1075936, -369824, 58976, 0
Offset: 1

Views

Author

Alois P. Heinz, Jul 20 2011

Keywords

Comments

The n X n X n triangular grid has n rows with i vertices in row i. Each vertex is connected to the neighbors in the same row and up to two vertices in each of the neighboring rows. The graph has A000217(n) vertices and 3*A000217(n-1) edges altogether.

Examples

			4 example graphs:                           o
                                           / \
                              o           o---o
                             / \         / \ / \
                    o       o---o       o---o---o
                   / \     / \ / \     / \ / \ / \
              o   o---o   o---o---o   o---o---o---o
  n:          1     2         3             4
  Vertices:   1     3         6            10
  Edges:      0     3         9            18
The 2 X 2 X 2 triangular grid is equal to the cycle graph C_3 with chromatic polynomial q^3 -3*q^2 +2*q => [1, -3, 2, 0].
Triangle T(n,k) begins:
  1,   0;
  1,  -3,   2,      0;
  1,  -9,  32,    -56,     48,     -16,       0;
  1, -18, 144,   -672,   2016,   -4031,    5368, ...
  1, -30, 419,  -3612,  21477,  -93207,  304555, ...
  1, -45, 965, -13115, 126720, -925528, 5303300, ...
  ...
		

Crossrefs

Showing 1-4 of 4 results.