cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A007283 a(n) = 3*2^n.

Original entry on oeis.org

3, 6, 12, 24, 48, 96, 192, 384, 768, 1536, 3072, 6144, 12288, 24576, 49152, 98304, 196608, 393216, 786432, 1572864, 3145728, 6291456, 12582912, 25165824, 50331648, 100663296, 201326592, 402653184, 805306368, 1610612736, 3221225472, 6442450944, 12884901888
Offset: 0

Views

Author

Keywords

Comments

Same as Pisot sequences E(3, 6), L(3, 6), P(3, 6), T(3, 6). See A008776 for definitions of Pisot sequences.
Numbers k such that A006530(A000010(k)) = A000010(A006530(k)) = 2. - Labos Elemer, May 07 2002
Also least number m such that 2^n is the smallest proper divisor of m which is also a suffix of m in binary representation, see A080940. - Reinhard Zumkeller, Feb 25 2003
Length of the period of the sequence Fibonacci(k) (mod 2^(n+1)). - Benoit Cloitre, Mar 12 2003
The sequence of first differences is this sequence itself. - Alexandre Wajnberg and Eric Angelini, Sep 07 2005
Subsequence of A122132. - Reinhard Zumkeller, Aug 21 2006
Apart from the first term, a subsequence of A124509. - Reinhard Zumkeller, Nov 04 2006
Total number of Latin n-dimensional hypercubes (Latin polyhedra) of order 3. - Kenji Ohkuma (k-ookuma(AT)ipa.go.jp), Jan 10 2007
Number of different ternary hypercubes of dimension n. - Edwin Soedarmadji (edwin(AT)systems.caltech.edu), Dec 10 2005
For n >= 1, a(n) is equal to the number of functions f:{1, 2, ..., n + 1} -> {1, 2, 3} such that for fixed, different x_1, x_2,...,x_n in {1, 2, ..., n + 1} and fixed y_1, y_2,...,y_n in {1, 2, 3} we have f(x_i) <> y_i, (i = 1,2,...,n). - Milan Janjic, May 10 2007
a(n) written in base 2: 11, 110, 11000, 110000, ..., i.e.: 2 times 1, n times 0 (see A003953). - Jaroslav Krizek, Aug 17 2009
Subsequence of A051916. - Reinhard Zumkeller, Mar 20 2010
Numbers containing the number 3 in their Collatz trajectories. - Reinhard Zumkeller, Feb 20 2012
a(n-1) gives the number of ternary numbers with n digits with no two adjacent digits in common; e.g., for n=3 we have 010, 012, 020, 021, 101, 102, 120, 121, 201, 202, 210 and 212. - Jon Perry, Oct 10 2012
If n > 1, then a(n) is a solution for the equation sigma(x) + phi(x) = 3x-4. This equation also has solutions 84, 3348, 1450092, ... which are not of the form 3*2^n. - Farideh Firoozbakht, Nov 30 2013
a(n) is the upper bound for the "X-ray number" of any convex body in E^(n + 2), conjectured by Bezdek and Zamfirescu, and proved in the plane E^2 (see the paper by Bezdek and Zamfirescu). - L. Edson Jeffery, Jan 11 2014
If T is a topology on a set V of size n and T is not the discrete topology, then T has at most 3 * 2^(n-2) many open sets. See Brown and Stephen references. - Ross La Haye, Jan 19 2014
Comment from Charles Fefferman, courtesy of Doron Zeilberger, Dec 02 2014: (Start)
Fix a dimension n. For a real-valued function f defined on a finite set E in R^n, let Norm(f, E) denote the inf of the C^2 norms of all functions F on R^n that agree with f on E. Then there exist constants k and C depending only on the dimension n such that Norm(f, E) <= C*max{ Norm(f, S) }, where the max is taken over all k-point subsets S in E. Moreover, the best possible k is 3 * 2^(n-1).
The analogous result, with the same k, holds when the C^2 norm is replaced, e.g., by the C^1, alpha norm (0 < alpha <= 1). However, the optimal analogous k, e.g., for the C^3 norm is unknown.
For the above results, see Y. Brudnyi and P. Shvartsman (1994). (End)
Also, coordination sequence for (infinity, infinity, infinity) tiling of hyperbolic plane. - N. J. A. Sloane, Dec 29 2015
The average of consecutive powers of 2 beginning with 2^1. - Melvin Peralta and Miriam Ong Ante, May 14 2016
For n > 1, a(n) is the smallest Zumkeller number with n divisors that are also Zumkeller numbers (A083207). - Ivan N. Ianakiev, Dec 09 2016
Also, for n >= 2, the number of length-n strings over the alphabet {0,1,2,3} having only the single letters as nonempty palindromic subwords. (Corollary 21 in Fleischer and Shallit) - Jeffrey Shallit, Dec 02 2019
Also, a(n) is the minimum link-length of any covering trail, circuit, path, and cycle for the set of the 2^(n+2) vertices of an (n+2)-dimensional hypercube. - Marco Ripà, Aug 22 2022
The known fixed points of maps n -> A163511(n) and n -> A243071(n). [See comments in A163511]. - Antti Karttunen, Sep 06 2023
The finite subsequence a(3), a(4), a(5), a(6) = 24, 48, 96, 192 is one of only two geometric sequences that can be formed with all interior angles (all integer, in degrees) of a simple polygon. The other sequence is a subsequence of A000244 (see comment there). - Felix Huber, Feb 15 2024
A level 1 Sierpiński triangle is a triangle. Level n+1 is formed from three copies of level n by identifying pairs of corner vertices of each pair of triangles. For n>2, a(n-3) is the radius of the level n Sierpiński triangle graph. - Allan Bickle, Aug 03 2024

References

  • Jason I. Brown, Discrete Structures and Their Interactions, CRC Press, 2013, p. 71.
  • T. Ito, Method, equipment, program and storage media for producing tables, Publication number JP2004-272104A, Japan Patent Office (written in Japanese, a(2)=12, a(3)=24, a(4)=48, a(5)=96, a(6)=192, a(7)=384 (a(7)=284 was corrected)).
  • Kenji Ohkuma, Atsuhiro Yamagishi and Toru Ito, Cryptography Research Group Technical report, IT Security Center, Information-Technology Promotion Agency, JAPAN.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Subsequence of the following sequences: A029744, A029747, A029748, A029750, A362804 (after 3), A364494, A364496, A364289, A364291, A364292, A364295, A364497, A364964, A365422.
Essentially same as A003945 and A042950.
Row sums of (5, 1)-Pascal triangle A093562 and of (1, 5) Pascal triangle A096940.
Cf. Latin squares: A000315, A002860, A003090, A040082, A003191; Latin cubes: A098843, A098846, A098679, A099321.

Programs

Formula

G.f.: 3/(1-2*x).
a(n) = 2*a(n - 1), n > 0; a(0) = 3.
a(n) = Sum_{k = 0..n} (-1)^(k reduced (mod 3))*binomial(n, k). - Benoit Cloitre, Aug 20 2002
a(n) = A118416(n + 1, 2) for n > 1. - Reinhard Zumkeller, Apr 27 2006
a(n) = A000079(n) + A000079(n + 1). - Zerinvary Lajos, May 12 2007
a(n) = A000079(n)*3. - Omar E. Pol, Dec 16 2008
From Paul Curtz, Feb 05 2009: (Start)
a(n) = b(n) + b(n+3) for b = A001045, A078008, A154879.
a(n) = abs(b(n) - b(n+3)) with b(n) = (-1)^n*A084247(n). (End)
a(n) = 2^n + 2^(n + 1). - Jaroslav Krizek, Aug 17 2009
a(n) = A173786(n + 1, n) = A173787(n + 2, n). - Reinhard Zumkeller, Feb 28 2010
A216022(a(n)) = 6 and A216059(a(n)) = 7, for n > 0. - Reinhard Zumkeller, Sep 01 2012
a(n) = (A000225(n) + 1)*3. - Martin Ettl, Nov 11 2012
E.g.f.: 3*exp(2*x). - Ilya Gutkovskiy, May 15 2016
A020651(a(n)) = 2. - Yosu Yurramendi, Jun 01 2016
a(n) = sqrt(A014551(n + 1)*A014551(n + 2) + A014551(n)^2). - Ezhilarasu Velayutham, Sep 01 2019
a(A048672(n)) = A225546(A133466(n)). - Michel Marcus and Peter Munn, Nov 29 2019
Sum_{n>=1} 1/a(n) = 2/3. - Amiram Eldar, Oct 28 2020

A182368 Triangle T(n,k), n>=1, 0<=k<=n^2, read by rows: row n gives the coefficients of the chromatic polynomial of the square grid graph G_(n,n), highest powers first.

Original entry on oeis.org

1, 0, 1, -4, 6, -3, 0, 1, -12, 66, -216, 459, -648, 594, -323, 79, 0, 1, -24, 276, -2015, 10437, -40614, 122662, -292883, 557782, -848056, 1022204, -960627, 682349, -346274, 112275, -17493, 0, 1, -40, 780, -9864, 90798, -647352, 3714180, -17590911, 69997383
Offset: 1

Views

Author

Alois P. Heinz, Apr 26 2012

Keywords

Comments

The square grid graph G_(n,n) has n^2 = A000290(n) vertices and 2*n*(n-1) = A046092(n-1) edges. The chromatic polynomial of G_(n,n) has n^2+1 = A002522(n) coefficients.

Examples

			3 example graphs:                          o---o---o
.                                          |   |   |
.                             o---o        o---o---o
.                             |   |        |   |   |
.                o            o---o        o---o---o
Graph:        G_(1,1)        G_(2,2)        G_(3,3)
Vertices:        1              4              9
Edges:           0              4             12
The square grid graph G_(2,2) is the cycle graph C_4 with chromatic polynomial q^4 -4*q^3 +6*q^2 -3*q => row 2 = [1, -4, 6, -3, 0].
Triangle T(n,k) begins:
  1,    0;
  1,   -4,     6,      -3,        0;
  1,  -12,    66,    -216,      459,       -648,         594, ...
  1,  -24,   276,   -2015,    10437,     -40614,      122662, ...
  1,  -40,   780,   -9864,    90798,    -647352,     3714180, ...
  1,  -60,  1770,  -34195,   486210,   -5421612,    49332660, ...
  1,  -84,  3486,  -95248,  1926585,  -30755376,   403410654, ...
  1, -112,  6216, -227871,  6205479, -133865298,  2382122274, ...
  1, -144, 10296, -487280, 17169852, -480376848, 11114098408, ...
  ...
		

Crossrefs

Columns 0, 1 give: A000012, (-1)*A046092(n-1).
Sums of absolute values of row elements give: A080690(n).

Programs

  • Mathematica
    Reverse /@ CoefficientList[Table[ChromaticPolynomial[GridGraph[{n, n}], x], {n, 5}], x] // Flatten (* Eric W. Weisstein, May 01 2017 *)

A067771 Number of vertices in Sierpiński triangle of order n.

Original entry on oeis.org

3, 6, 15, 42, 123, 366, 1095, 3282, 9843, 29526, 88575, 265722, 797163, 2391486, 7174455, 21523362, 64570083, 193710246, 581130735, 1743392202, 5230176603, 15690529806, 47071589415, 141214768242, 423644304723, 1270932914166
Offset: 0

Views

Author

Martin Wessendorf (martinw(AT)mail.ahc.umn.edu), Feb 09 2002

Keywords

Comments

An order 0 Sierpiński triangle is a triangle. Order n+1 is formed from three copies of order n by identifying pairs of corner vertices of each pair of triangles. - Allan Bickle, Aug 03 2024
This sequence represents another link from the product factor space Q X Q / {(1,1), (-1, -1)} to Sierpiński's triangle. The first "link" found was to sequence A048473. - Creighton Dement, Aug 05 2004
a(n) equals the number of orbits of the finite group PSU(3,3^n) on subsets of size 3 of the 3^(3n)+1 isotropic points of a unitary 3 space. - Paul M. Bradley, Jan 31 2017
For n >= 1, number of edges in a planar Apollonian graph at iteration n. - Andrew D. Walker, Jul 08 2017
Also the total domination number of the (n+3)-Dorogovtsev-Goltsev-Mendes graph, using the convention DGM(0) = P_2. - Eric W. Weisstein, Jan 14 2024

Examples

			Order 0 is a triangle, so a(0) = 3.
Order 1 has three corners (degree 2) and three other vertices, so a(1) = 6.
3 example graphs:                        o
                                        / \
                                       o---o
                                      / \ / \
                        o            o---o---o
                       / \          / \     / \
             o        o---o        o---o   o---o
            / \      / \ / \      / \ / \ / \ / \
           o---o    o---o---o    o---o---o---o---o
Graph:      S_1        S_2              S_3
Vertices:    3          6                15
Edges:       3          9                27
		

References

  • Peter Wessendorf and Kristina Downing, personal communication.

Crossrefs

Cf. A048473.
Cf. A007283, A029858, A067771, A193277, A233774, A233775, A246959 (Sierpiński triangle graphs).

Programs

  • Magma
    [(3/2)*(1+3^n): n in [0..30]]; // Vincenzo Librandi, Jun 20 2011
  • Mathematica
    LinearRecurrence[{4, -3}, {3, 6}, 26] (* or *)
    CoefficientList[Series[3 (1 - 2 x)/((1 - x) (1 - 3 x)), {x, 0, 25}], x] (* Michael De Vlieger, Feb 02 2017 *)
    Table[3/2 (3^n + 1), {n, 0, 20}] (* Eric W. Weisstein, Jan 14 2024 *)
    3/2 (3^Range[0, 20] + 1) (* Eric W. Weisstein, Jan 14 2024 *)

Formula

a(n) = (3/2)*(3^n + 1).
a(n) = 3 + 3^1 + 3^2 + 3^3 + 3^4 + ... + 3^n = 3 + Sum_{k=1..n} 3^n.
a(n) = 3*A007051(n).
a(0) = 3, a(n) = a(n-1) + 3^n. a(n) = (3/2)*(1+3^n). - Zak Seidov, Mar 19 2007
a(n) = 4*a(n-1) - 3*a(n-2).
G.f.: 3*(1-2*x)/((1-x)*(1-3*x)). - Colin Barker, Jan 10 2012
a(n) = A233774(2^n). - Omar E. Pol, Dec 16 2013
a(n) = 3*a(n-1) - 3. - Zak Seidov, Oct 26 2014
E.g.f.: 3*(exp(x) + exp(3*x))/2. - Stefano Spezia, Feb 09 2021
a(n) = A029858(n+1) + 3. - Allan Bickle, Aug 03 2024

Extensions

More terms from Benoit Cloitre, Feb 22 2002

A212084 Triangle T(n,k), n>=0, 0<=k<=2n, read by rows: row n gives the coefficients of the chromatic polynomial of the complete bipartite graph K_(n,n), highest powers first.

Original entry on oeis.org

1, 1, -1, 0, 1, -4, 6, -3, 0, 1, -9, 36, -75, 78, -31, 0, 1, -16, 120, -524, 1400, -2236, 1930, -675, 0, 1, -25, 300, -2200, 10650, -34730, 75170, -102545, 78610, -25231, 0, 1, -36, 630, -6915, 52080, -279142, 1074822, -2942445, 5552680, -6796926, 4787174
Offset: 0

Views

Author

Alois P. Heinz, Apr 30 2012

Keywords

Comments

The complete bipartite graph K_(n,n) has 2n vertices and n^2 = A000290(n) edges. The chromatic polynomial of K_(n,n) has 2n+1 = A005408(n) coefficients.

Examples

			3 example graphs:                     +-----------+
.                 o        o   o      o   o   o   |
.                 |        |\ /|      |\ /|\ /|\ /
.                 |        | X |      | X | X | X
.                 |        |/ \|      |/ \|/ \|/ \
.                 o        o   o      o   o   o   |
.                                     +-----------+
Graph:         K_(1,1)    K_(2,2)      K_(3,3)
Vertices:         2          4            6
Edges:            1          4            9
The complete bipartite graph K_(2,2) is the cycle graph C_4 with chromatic polynomial q^4 -4*q^3 +6*q^2 -3*q => row 2 = [1, -4, 6, -3, 0].
Triangle T(n,k) begins:
  1;
  1,  -1,   0;
  1,  -4,   6,    -3,     0;
  1,  -9,  36,   -75,    78,     -31,       0;
  1, -16, 120,  -524,  1400,   -2236,    1930,     -675, ...
  1, -25, 300, -2200, 10650,  -34730,   75170,  -102545, ...
  1, -36, 630, -6915, 52080, -279142, 1074822, -2942445, ...
  ...
		

Crossrefs

Columns k=0-2 give: A000012, (-1)*A000290, A083374.
Row sums and last elements of rows give: A000007.
Row lengths give: A005408.
Sums of absolute values of row elements give: A048163(n+1).
T(n,2n-1) = (-1)*A092552(n).

Programs

  • Maple
    P:= n-> add(Stirling2(n, k) *mul(q-i, i=0..k-1) *(q-k)^n, k=0..n):
    T:= n-> seq(coeff(P(n), q, 2*n-k), k=0..2*n):
    seq(T(n), n=1..8);

Formula

T(n,k) = [q^(2n-k)] Sum_{j=0..n} (q-j)^n * S2(n,j) * Product_{i=0..j-1} (q-i).

Extensions

T(0,0)=1 prepended by Alois P. Heinz, May 03 2024

A193283 Triangle T(n,k), n>=1, 0<=k<=n*(n+1)/2, read by rows: row n gives the coefficients of the chromatic polynomial of the n X n X n triangular grid, highest powers first.

Original entry on oeis.org

1, 0, 1, -3, 2, 0, 1, -9, 32, -56, 48, -16, 0, 1, -18, 144, -672, 2016, -4031, 5368, -4584, 2272, -496, 0, 1, -30, 419, -3612, 21477, -93207, 304555, -761340, 1463473, -2152758, 2385118, -1929184, 1075936, -369824, 58976, 0
Offset: 1

Views

Author

Alois P. Heinz, Jul 20 2011

Keywords

Comments

The n X n X n triangular grid has n rows with i vertices in row i. Each vertex is connected to the neighbors in the same row and up to two vertices in each of the neighboring rows. The graph has A000217(n) vertices and 3*A000217(n-1) edges altogether.

Examples

			4 example graphs:                           o
                                           / \
                              o           o---o
                             / \         / \ / \
                    o       o---o       o---o---o
                   / \     / \ / \     / \ / \ / \
              o   o---o   o---o---o   o---o---o---o
  n:          1     2         3             4
  Vertices:   1     3         6            10
  Edges:      0     3         9            18
The 2 X 2 X 2 triangular grid is equal to the cycle graph C_3 with chromatic polynomial q^3 -3*q^2 +2*q => [1, -3, 2, 0].
Triangle T(n,k) begins:
  1,   0;
  1,  -3,   2,      0;
  1,  -9,  32,    -56,     48,     -16,       0;
  1, -18, 144,   -672,   2016,   -4031,    5368, ...
  1, -30, 419,  -3612,  21477,  -93207,  304555, ...
  1, -45, 965, -13115, 126720, -925528, 5303300, ...
  ...
		

Crossrefs

A370933 Number of pairs of antipodal vertices in the level n>1 Sierpiński triangle graph.

Original entry on oeis.org

6, 15, 42, 132, 456, 1680, 6432, 25152, 99456, 395520, 1577472, 6300672, 25184256, 100700160, 402726912, 1610760192, 6442745856, 25770393600, 103080394752, 412319219712, 1649272160256, 6597079203840, 26388297940992, 105553154015232, 422212540563456, 1688850011258880, 6755399743045632
Offset: 2

Views

Author

Allan Bickle, Aug 07 2024

Keywords

Comments

A level 1 Sierpiński triangle graph is a triangle. Level n+1 is formed from three copies of level n by identifying pairs of corner vertices of each pair of triangles.
Antipodal vertices are a pair of vertices at maximum distance in a graph. The diameter of the level n Sierpiński triangle graph is 2^(n-1).

Examples

			3 example graphs:                        o
                                        / \
                                       o---o
                                      / \ / \
                        o            o---o---o
                       / \          / \     / \
             o        o---o        o---o   o---o
            / \      / \ / \      / \ / \ / \ / \
           o---o    o---o---o    o---o---o---o---o
Graph:      S_1        S_2              S_3
For S_2, there are 3 pairs of corners and 3 pairs of a corner and a middle vertex, so a(2) = 6.
		

Crossrefs

Cf. A007283, A029858, A067771, A193277, A233774, A233775, A246959, A298202 (Sierpiński triangle graphs).
Cf. A375256 (antipodal pairs in Hanoi graphs).

Programs

  • Mathematica
    A370933[n_] := 3*2^(n - 3)*(2^(n - 2) + 3);
    Array[A370933, 30, 2] (* or *)
    LinearRecurrence[{6, -8}, {6, 15}, 30] (* Paolo Xausa, Sep 23 2024 *)
  • PARI
    a(n) = 3*2^(n-3)*(2^(n-2)+3); \\ Michel Marcus, Aug 08 2024

Formula

a(n) = 3*2^(n-3)*(2^(n-2)+3).
a(n) = 3*A257273(n-2).
a(n) = A375256(n-1) + 3.

Extensions

More terms from Michel Marcus, Aug 08 2024

A295189 Chromatic invariant of the n-Sierpinski gasket graph.

Original entry on oeis.org

1, 1, 27, 20346417, 505719202397835049370570187
Offset: 1

Views

Author

Eric W. Weisstein, Nov 16 2017

Keywords

Crossrefs

Cf. A193277.

Extensions

a(5) onwards from Andrew Howroyd, Aug 08 2024
Showing 1-7 of 7 results.