cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 20 results. Next

A007283 a(n) = 3*2^n.

Original entry on oeis.org

3, 6, 12, 24, 48, 96, 192, 384, 768, 1536, 3072, 6144, 12288, 24576, 49152, 98304, 196608, 393216, 786432, 1572864, 3145728, 6291456, 12582912, 25165824, 50331648, 100663296, 201326592, 402653184, 805306368, 1610612736, 3221225472, 6442450944, 12884901888
Offset: 0

Views

Author

Keywords

Comments

Same as Pisot sequences E(3, 6), L(3, 6), P(3, 6), T(3, 6). See A008776 for definitions of Pisot sequences.
Numbers k such that A006530(A000010(k)) = A000010(A006530(k)) = 2. - Labos Elemer, May 07 2002
Also least number m such that 2^n is the smallest proper divisor of m which is also a suffix of m in binary representation, see A080940. - Reinhard Zumkeller, Feb 25 2003
Length of the period of the sequence Fibonacci(k) (mod 2^(n+1)). - Benoit Cloitre, Mar 12 2003
The sequence of first differences is this sequence itself. - Alexandre Wajnberg and Eric Angelini, Sep 07 2005
Subsequence of A122132. - Reinhard Zumkeller, Aug 21 2006
Apart from the first term, a subsequence of A124509. - Reinhard Zumkeller, Nov 04 2006
Total number of Latin n-dimensional hypercubes (Latin polyhedra) of order 3. - Kenji Ohkuma (k-ookuma(AT)ipa.go.jp), Jan 10 2007
Number of different ternary hypercubes of dimension n. - Edwin Soedarmadji (edwin(AT)systems.caltech.edu), Dec 10 2005
For n >= 1, a(n) is equal to the number of functions f:{1, 2, ..., n + 1} -> {1, 2, 3} such that for fixed, different x_1, x_2,...,x_n in {1, 2, ..., n + 1} and fixed y_1, y_2,...,y_n in {1, 2, 3} we have f(x_i) <> y_i, (i = 1,2,...,n). - Milan Janjic, May 10 2007
a(n) written in base 2: 11, 110, 11000, 110000, ..., i.e.: 2 times 1, n times 0 (see A003953). - Jaroslav Krizek, Aug 17 2009
Subsequence of A051916. - Reinhard Zumkeller, Mar 20 2010
Numbers containing the number 3 in their Collatz trajectories. - Reinhard Zumkeller, Feb 20 2012
a(n-1) gives the number of ternary numbers with n digits with no two adjacent digits in common; e.g., for n=3 we have 010, 012, 020, 021, 101, 102, 120, 121, 201, 202, 210 and 212. - Jon Perry, Oct 10 2012
If n > 1, then a(n) is a solution for the equation sigma(x) + phi(x) = 3x-4. This equation also has solutions 84, 3348, 1450092, ... which are not of the form 3*2^n. - Farideh Firoozbakht, Nov 30 2013
a(n) is the upper bound for the "X-ray number" of any convex body in E^(n + 2), conjectured by Bezdek and Zamfirescu, and proved in the plane E^2 (see the paper by Bezdek and Zamfirescu). - L. Edson Jeffery, Jan 11 2014
If T is a topology on a set V of size n and T is not the discrete topology, then T has at most 3 * 2^(n-2) many open sets. See Brown and Stephen references. - Ross La Haye, Jan 19 2014
Comment from Charles Fefferman, courtesy of Doron Zeilberger, Dec 02 2014: (Start)
Fix a dimension n. For a real-valued function f defined on a finite set E in R^n, let Norm(f, E) denote the inf of the C^2 norms of all functions F on R^n that agree with f on E. Then there exist constants k and C depending only on the dimension n such that Norm(f, E) <= C*max{ Norm(f, S) }, where the max is taken over all k-point subsets S in E. Moreover, the best possible k is 3 * 2^(n-1).
The analogous result, with the same k, holds when the C^2 norm is replaced, e.g., by the C^1, alpha norm (0 < alpha <= 1). However, the optimal analogous k, e.g., for the C^3 norm is unknown.
For the above results, see Y. Brudnyi and P. Shvartsman (1994). (End)
Also, coordination sequence for (infinity, infinity, infinity) tiling of hyperbolic plane. - N. J. A. Sloane, Dec 29 2015
The average of consecutive powers of 2 beginning with 2^1. - Melvin Peralta and Miriam Ong Ante, May 14 2016
For n > 1, a(n) is the smallest Zumkeller number with n divisors that are also Zumkeller numbers (A083207). - Ivan N. Ianakiev, Dec 09 2016
Also, for n >= 2, the number of length-n strings over the alphabet {0,1,2,3} having only the single letters as nonempty palindromic subwords. (Corollary 21 in Fleischer and Shallit) - Jeffrey Shallit, Dec 02 2019
Also, a(n) is the minimum link-length of any covering trail, circuit, path, and cycle for the set of the 2^(n+2) vertices of an (n+2)-dimensional hypercube. - Marco Ripà, Aug 22 2022
The known fixed points of maps n -> A163511(n) and n -> A243071(n). [See comments in A163511]. - Antti Karttunen, Sep 06 2023
The finite subsequence a(3), a(4), a(5), a(6) = 24, 48, 96, 192 is one of only two geometric sequences that can be formed with all interior angles (all integer, in degrees) of a simple polygon. The other sequence is a subsequence of A000244 (see comment there). - Felix Huber, Feb 15 2024
A level 1 Sierpiński triangle is a triangle. Level n+1 is formed from three copies of level n by identifying pairs of corner vertices of each pair of triangles. For n>2, a(n-3) is the radius of the level n Sierpiński triangle graph. - Allan Bickle, Aug 03 2024

References

  • Jason I. Brown, Discrete Structures and Their Interactions, CRC Press, 2013, p. 71.
  • T. Ito, Method, equipment, program and storage media for producing tables, Publication number JP2004-272104A, Japan Patent Office (written in Japanese, a(2)=12, a(3)=24, a(4)=48, a(5)=96, a(6)=192, a(7)=384 (a(7)=284 was corrected)).
  • Kenji Ohkuma, Atsuhiro Yamagishi and Toru Ito, Cryptography Research Group Technical report, IT Security Center, Information-Technology Promotion Agency, JAPAN.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Subsequence of the following sequences: A029744, A029747, A029748, A029750, A362804 (after 3), A364494, A364496, A364289, A364291, A364292, A364295, A364497, A364964, A365422.
Essentially same as A003945 and A042950.
Row sums of (5, 1)-Pascal triangle A093562 and of (1, 5) Pascal triangle A096940.
Cf. Latin squares: A000315, A002860, A003090, A040082, A003191; Latin cubes: A098843, A098846, A098679, A099321.

Programs

Formula

G.f.: 3/(1-2*x).
a(n) = 2*a(n - 1), n > 0; a(0) = 3.
a(n) = Sum_{k = 0..n} (-1)^(k reduced (mod 3))*binomial(n, k). - Benoit Cloitre, Aug 20 2002
a(n) = A118416(n + 1, 2) for n > 1. - Reinhard Zumkeller, Apr 27 2006
a(n) = A000079(n) + A000079(n + 1). - Zerinvary Lajos, May 12 2007
a(n) = A000079(n)*3. - Omar E. Pol, Dec 16 2008
From Paul Curtz, Feb 05 2009: (Start)
a(n) = b(n) + b(n+3) for b = A001045, A078008, A154879.
a(n) = abs(b(n) - b(n+3)) with b(n) = (-1)^n*A084247(n). (End)
a(n) = 2^n + 2^(n + 1). - Jaroslav Krizek, Aug 17 2009
a(n) = A173786(n + 1, n) = A173787(n + 2, n). - Reinhard Zumkeller, Feb 28 2010
A216022(a(n)) = 6 and A216059(a(n)) = 7, for n > 0. - Reinhard Zumkeller, Sep 01 2012
a(n) = (A000225(n) + 1)*3. - Martin Ettl, Nov 11 2012
E.g.f.: 3*exp(2*x). - Ilya Gutkovskiy, May 15 2016
A020651(a(n)) = 2. - Yosu Yurramendi, Jun 01 2016
a(n) = sqrt(A014551(n + 1)*A014551(n + 2) + A014551(n)^2). - Ezhilarasu Velayutham, Sep 01 2019
a(A048672(n)) = A225546(A133466(n)). - Michel Marcus and Peter Munn, Nov 29 2019
Sum_{n>=1} 1/a(n) = 2/3. - Amiram Eldar, Oct 28 2020

A052548 a(n) = 2^n + 2.

Original entry on oeis.org

3, 4, 6, 10, 18, 34, 66, 130, 258, 514, 1026, 2050, 4098, 8194, 16386, 32770, 65538, 131074, 262146, 524290, 1048578, 2097154, 4194306, 8388610, 16777218, 33554434, 67108866, 134217730, 268435458, 536870914, 1073741826, 2147483650
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Comments

The most "compact" sequence that satisfies Bertrand's Postulate. Begin with a(1) = 3 = n, then 2n - 2 = 4 = n_1, 2n_1 - 2 = 6 = n_2, 2n_2 - 2 = 10, etc. = a(n), hence there is guaranteed to be at least one prime between successive members of the sequence. - Andrew S. Plewe, Dec 11 2007
Number of 2-sided prudent polygons of area n, for n>0, see Beaton, p. 5. - Jonathan Vos Post, Nov 30 2010

Crossrefs

Programs

  • Haskell
    a052548 = (+ 2) . a000079
    a052548_list = iterate ((subtract 2) . (* 2)) 3
    -- Reinhard Zumkeller, Sep 05 2015
  • Magma
    [2^n + 2: n in [0..35]]; // Vincenzo Librandi, Apr 29 2011
    
  • Maple
    spec := [S,{S=Union(Sequence(Union(Z,Z)),Sequence(Z),Sequence(Z))},unlabeled]: seq(combstruct[count](spec,size=n), n=0..20);
  • Mathematica
    2^Range[0,40]+2 (* Harvey P. Dale, Jun 26 2012 *)
  • PARI
    a(n)=1<Charles R Greathouse IV, Nov 20 2011
    

Formula

G.f.: (3-5*x)/((1-2*x)*(1-x)) = (3-5*x)/(1 - 3*x + 2*x^2) = 2/(1-x) + 1/(1-2*x).
a(0)=3, a(1)=4, a(n) = 3*a(n-1) - 2*a(n-2).
a(n) = A058896(n)/A000918(n), for n>0. - Reinhard Zumkeller, Feb 14 2009
a(n) = A173786(n,1), for n>0. - Reinhard Zumkeller, Feb 28 2010
a(n)*A000918(n) = A028399(2*n), for n>0. - Reinhard Zumkeller, Feb 28 2010
a(0)=3, a(n) = 2*a(n-1) - 2. - Vincenzo Librandi, Aug 06 2010
E.g.f.: (2 + exp(x))*exp(x). - Ilya Gutkovskiy, Aug 16 2016

Extensions

More terms from James Sellers, Jun 06 2000

A029858 a(n) = (3^n - 3)/2.

Original entry on oeis.org

0, 3, 12, 39, 120, 363, 1092, 3279, 9840, 29523, 88572, 265719, 797160, 2391483, 7174452, 21523359, 64570080, 193710243, 581130732, 1743392199, 5230176600, 15690529803, 47071589412, 141214768239
Offset: 1

Views

Author

Keywords

Comments

Also the number of 2-block covers of a labeled n-set. a(n) = A055154(n,2). Generally, number of k-block covers of a labeled n-set is T(n,k) = (1/k!)*Sum_{i = 1..k + 1} Stirling1(k + 1,i)*(2^(i - 1) - 1)^n. In particular, T(n,2) = (1/2!)*(3^n - 3), T(n,3) = (1/3!)*(7^n - 6*3^n + 11), T(n,4) = (1/4)!*(15^n - 10*7^n + 35*3^n - 50), ... - Vladeta Jovovic, Jan 19 2001
Conjectured to be the number of integers from 0 to 10^(n-1) - 1 that lack 0, 1, 2, 3, 4, 5 and 6 as a digit. - Alexandre Wajnberg, Apr 25 2005. This is easily verified to be true. - Renzo Benedetti, Sep 25 2008
Number of monic irreducible polynomials of degree 1 in GF(3)[x1,...,xn]. - Max Alekseyev, Jan 23 2006
Also, the greatest number of identical weights among which an odd one can be identified and it can be decided if the odd one is heavier or lighter, using n weighings with a comparing balance. If the odd one only needs to be identified, the sequence starts 4, 13, 40 and is A003462 (3^n - 1)/2, n > 1. - Tanya Khovanova, Dec 11 2006; corrected by Samuel E. Rhoads, Apr 18 2016
Binomial transform yields A134057. Inverse binomial transform yields A062510 with one additional 0 in front. - R. J. Mathar, Jun 18 2008
Numbers k where the recurrence s(0)=0, if s(k-1) >= k then s(k) = s(k-1) - k otherwise s(k) = s(k-1) + k produces s(k) = 0. - Hugo Pfoertner, Jan 05 2012
For n > 1: A008344(a(n)) = a(n). - Reinhard Zumkeller, May 09 2012
Also the number of edges in the (n-1)-Hanoi graph. - Eric W. Weisstein, Jun 18 2017
A level 1 Sierpiński triangle graph is a triangle. Level n+1 is formed from three copies of level n by identifying pairs of corner vertices of each pair of triangles. a(n) is the number of degree 4 vertices in the level n Sierpinski triangle graph. - Allan Bickle, Jul 30 2020
Also the number of minimum vertex cuts in the n-Apollonian network. - Eric W. Weisstein, Dec 20 2020
Also the minimum number of turns in n-dimensional Euclidean space needed to visit all 3^n points of the grid {0, 1, 2}^n, moving in straight lines between turns (repeated visits and direction changes at non-grid points are allowed). - Marco Ripà, Aug 06 2025

Examples

			For the Sierpiński triangle, Level 1 is a triangle, so a(1) = 0.
Level 2 has three corners (degree 2) and three degree 4 vertices, so a(2) = 3.
The level 2 Hanoi graph has 3 triangles joined by 3 edges, so a(2+1) = 12.
		

Crossrefs

Cf. A007283, A029858, A067771, A233774, A233775, A246959 (Sierpiński triangle graphs).
Cf. A000225, A029858, A058809, A375256 (Hanoi graphs).

Programs

Formula

a(n) = 3*a(n-1) + 3. - Alexandre Wajnberg, Apr 25 2005
O.g.f: 3*x^2/((1-x)*(1-3*x)). - R. J. Mathar, Jun 18 2008
a(n) = 3^(n-1) + a(n-1) (with a(1)=0). - Vincenzo Librandi, Nov 18 2010
a(n) = 3*A003462(n-1). - R. J. Mathar, Sep 10 2015
E.g.f.: 3*(-1 + exp(2*x))*exp(x)/2. - Ilya Gutkovskiy, Apr 19 2016
a(n) = A067771(n-1) - 3. - Allan Bickle, Jul 30 2020
a(n) = sigma(A008776(n-2)) for n>=2. - Flávio V. Fernandes, Apr 20 2021

Extensions

Corrected by T. D. Noe, Nov 07 2006

A058481 a(n) = 3^n - 2.

Original entry on oeis.org

1, 7, 25, 79, 241, 727, 2185, 6559, 19681, 59047, 177145, 531439, 1594321, 4782967, 14348905, 43046719, 129140161, 387420487, 1162261465, 3486784399, 10460353201, 31381059607, 94143178825, 282429536479, 847288609441
Offset: 1

Views

Author

Vladeta Jovovic, Nov 26 2000

Keywords

Comments

a(n) = number of 2 X n binary matrices with no zero rows or columns.
a(n)^2 + 2*a(n+1) + 1 is a square number, i.e., a(n)^2 + 2*a(n+1) + 1 = (a(n)+3)^2: for n=2, a(2)^2 + 2*a(3) + 1 = 7^2 + 2*25 + 1 = 100 = (7+3)^2; for n=3, a(3)^2 + 2*a(4) + 1 = 25^2 + 2*79 + 1 = 784 = (25+3)^2. - Bruno Berselli, Apr 23 2010
Sum of n-th row of triangle of powers of 3: 1; 3 1 3; 9 3 1 3 9; 27 9 3 1 3 9 27; ... . - Philippe Deléham, Feb 24 2014
a(n) = least k such that k*3^n + 1 is a square. Thus, the square is given by (3^n-1)^2. - Derek Orr, Mar 23 2014
Binomial transform of A058481: (1, 6, 12, 24, 48, 96, ...) and second binomial transform of (1, 5, 1, 5, 1, 5, ...). - Gary W. Adamson, Aug 24 2016
Number of ordered pairs of nonempty sets whose union is [n]. a(2) = 7: ({1,2},{1,2}), ({1,2},{1}), ({1,2},{2}), ({1},{1,2}), ({1},{2}), ({2},{1,2}), ({2},{1}). If "nonempty" is omitted we get A000244. - Manfred Boergens, Mar 29 2023

Examples

			G.f. = x + 7*x^2 + 25*x^3 + 79*x^4 + 241*x^5 + 727*x^6 + 2185*x^7 + 6559*x^8 + ...
a(1) = 1;
a(2) = 3 + 1 + 3 = 7;
a(3) = 9 + 3 + 1 + 3 + 9 = 25;
a(4) = 27 + 9 + 3 + 1 + 3 + 9 + 27 = 79; etc. - _Philippe Deléham_, Feb 24 2014
		

Crossrefs

Programs

Formula

Number of m X n binary matrices with no zero rows or columns is Sum_{j=0..m} (-1)^j*C(m, j)*(2^(m-j)-1)^n.
From Mohammad K. Azarian, Jan 14 2009: (Start)
G.f.: 1/(1-3*x)-2/(1-x)+1.
E.g.f.: e^(3*x)-2*(e^x)+1. (End)
a(n) = 3*a(n-1) + 4 (with a(1)=1). - Vincenzo Librandi, Aug 07 2010
a(n) = 4*a(n-1) - 3*a(n-2). - G. C. Greubel, Aug 25 2016

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Dec 04 2000

A100774 a(n) = 2*(3^n - 1).

Original entry on oeis.org

0, 4, 16, 52, 160, 484, 1456, 4372, 13120, 39364, 118096, 354292, 1062880, 3188644, 9565936, 28697812, 86093440, 258280324, 774840976, 2324522932, 6973568800, 20920706404, 62762119216, 188286357652, 564859072960, 1694577218884
Offset: 0

Views

Author

Pawel P. Mazur (Pawel.Mazur(AT)pwr.wroc.pl), Apr 06 2005

Keywords

Comments

a(n) is the number of steps which are made when generating all n-step nonreversing random walks that begin in a fixed point P on a two-dimensional square lattice. To make one step means to move along one edge on the lattice.
These are also the first local maxima reached in the Collatz trajectories of 2^n - 1. - David Rabahy, Oct 30 2017
Also the graph diameter of the n-Sierpinski carpet graph. - Eric W. Weisstein, Mar 13 2018
a(n) is the number of edge covers of F_{n,2}, which has adjacent vertices u and w, and n vertices each adjacent to both u and w. An edge cover is a subset of the edges where each vertex is adjacent to at least one vertex. To cover each of the n vertices v_i, we need to have at least the edge uv_i or wv_i or both, giving us three choices for each. We can then add the edge uw or not, which is 2*3^n choices. But we need to remove the case where all uv_i's were chosen and uw not chosen, and all ww_i's were chosen and uw not chosen. - Feryal Alayont, Jun 17 2024

Crossrefs

Programs

Formula

a(n) = 2*(3^n - 1).
a(n) = 4*Sum_{i=0..n-1} 3^i.
a(n) = 4*A003462(n).
a(n) = A048473(n) - 1. - Paul Curtz, Jan 19 2009
G.f.: 4*x/((1-x)*(1-3*x)). - Eric W. Weisstein, Mar 13 2018
a(n) = 4*a(n-1) - 3*a(n-2). - Eric W. Weisstein, Mar 13 2018
From Elmo R. Oliveira, Dec 06 2023: (Start)
a(n) = 2*A024023(n).
a(n) = 3*a(n-1) + 4 for n>0.
E.g.f.: 2*(exp(3*x) - exp(x)). (End)

A134931 a(n) = (5*3^n-3)/2.

Original entry on oeis.org

1, 6, 21, 66, 201, 606, 1821, 5466, 16401, 49206, 147621, 442866, 1328601, 3985806, 11957421, 35872266, 107616801, 322850406, 968551221, 2905653666, 8716961001, 26150883006, 78452649021, 235357947066, 706073841201, 2118221523606
Offset: 0

Views

Author

Rolf Pleisch, Jan 29 2008

Keywords

Comments

Numbers n where the recurrence s(0)=1, if s(n-1) >= n then s(n) = s(n-1) - n else s(n) = s(n-1) + n produces s(n)=0. - Hugo Pfoertner, Jan 05 2012
A046901(a(n)) = 1. - Reinhard Zumkeller, Jan 31 2013
Binomial transform of A146523: (1, 5, 10, 20, 40, ...) and double binomial transform of A010685: (1, 4, 1, 4, 1, 4, ...). - Gary W. Adamson, Aug 25 2016
Also the number of maximal cliques in the (n+1)-Hanoi graph. - Eric W. Weisstein, Dec 01 2017
a(n) is the least k such that f(a(n-1)+1) + ... + f(k) > f(a(n-2)+1) + ... + f(a(n-1)) for n > 1, where f(n) = 1/(n+1). Because Sum_{k=1..5*3^(n-1)} 1/(a(n)+3*k-1) + 1/(a(n)+3*k) + 1/(a(n)+3*k+1) - 1/((a(n)+1+5*3^n)*5*3^(n-1)) < Sum_{k=1..5*3^(n-1)} 1/(a(n-1)+k+1) < Sum_{k=1..5*3^(n-1)} 1/(a(n)+3*k-1) + 1/(a(n)+3*k) + 1/(a(n)+3*k+1), we have 1 < 1/3 + 1/4 + ... + 1/7 < 1/8 + 1/9 + ... + 1/22 < ... . - Jinyuan Wang, Jun 15 2020

Crossrefs

Programs

Formula

a(n) = 3*(a(n-1) + 1), with a(0)=1.
From R. J. Mathar, Jan 31 2008: (Start)
O.g.f.: (5/2)/(1-3*x) - (3/2)/(1-x).
a(n) = (A005030(n) - 3)/2. (End)
a(n) = A060816(n+1) - 1. - Philippe Deléham, Apr 14 2013
E.g.f.: exp(x)*(5*exp(2*x) - 3)/2. - Stefano Spezia, Aug 28 2023

Extensions

More terms from Vladimir Joseph Stephan Orlovsky, Dec 25 2008

A115099 a(0)=4, a(n) = 3*a(n-1) - 4.

Original entry on oeis.org

4, 8, 20, 56, 164, 488, 1460, 4376, 13124, 39368, 118100, 354296, 1062884, 3188648, 9565940, 28697816, 86093444, 258280328, 774840980, 2324522936, 6973568804, 20920706408, 62762119220, 188286357656, 564859072964, 1694577218888, 5083731656660, 15251194969976
Offset: 0

Views

Author

Miklos Kristof, Mar 02 2006

Keywords

Comments

A tetrahedron has 4 faces. Cut every corner so that we get triangular faces; the resulting polyhedron has 8 faces. Repeating this procedure gives polyhedra with 4, 8, 20, 56, etc. faces.

Crossrefs

Programs

Formula

a(n) = 2*3^n + 2.
From Colin Barker, May 31 2016: (Start)
a(n) = 4*a(n-1)-3*a(n-2) for n>1.
G.f.: 4*(1-2*x) / ((1-x)*(1-3*x)).
(End)
E.g.f.: 2*(1 + exp(2*x))*exp(x). - Ilya Gutkovskiy, May 31 2016
a(n) = 4 * A007051(n). - Alois P. Heinz, Jun 26 2023

A193277 Triangle T(n,k), n>=1, 0<=k<=(3+3^n)/2, read by rows: row n gives the coefficients of the chromatic polynomial of the Sierpinski gasket graph S_n, highest powers first.

Original entry on oeis.org

1, -3, 2, 0, 1, -9, 32, -56, 48, -16, 0, 1, -27, 339, -2625, 14016, -54647, 160663, -362460, 631828, -848736, 866640, -653248, 343744, -112896, 17408, 0, 1, -81, 3204, -82476, 1553454, -22823259, 272286183, -2711405961, 22990179324
Offset: 1

Views

Author

Alois P. Heinz, Jul 20 2011

Keywords

Comments

The Sierpinski graph S_n has (3+3^n)/2 vertices and 3^n edges. The chromatic polynomial of S_n has (3+3^n)/2+1 coefficients.

Examples

			3 example graphs:                        o
.                                       / \
.                                      o---o
.                                     / \ / \
.                       o            o---o---o
.                      / \          / \     / \
.            o        o---o        o---o   o---o
.           / \      / \ / \      / \ / \ / \ / \
.          o---o    o---o---o    o---o---o---o---o
Graph:      S_1        S_2              S_3
Vertices:    3          6                15
Edges:       3          9                27
The Sierpinski graph S_1 is equal to the cycle graph C_3 with chromatic polynomial q^3 -3*q^2 +2*q => [1, -3, 2, 0].
Triangle T(n,k) begins:
1,    -3,       2,           0;
1,    -9,      32,         -56,           48,              -16,  ...
1,   -27,     339,       -2625,        14016,           -54647,  ...
1,   -81,    3204,      -82476,      1553454,        -22823259,  ...
1,  -243,   29295,    -2336013,    138604878,      -6526886841,  ...
1,  -729,  265032,   -64069056,  11585834028,   -1671710903793,  ...
1, -2187, 2389419, -1738877625, 948268049436, -413339609377179,  ...
		

Crossrefs

A233774 Total number of vertices in the first n rows of Sierpinski gasket, with a(0) = 1.

Original entry on oeis.org

1, 3, 6, 10, 15, 19, 25, 33, 42, 46, 52, 60, 70, 78, 90, 106, 123, 127, 133, 141, 151, 159, 171, 187, 205, 213, 225, 241, 261, 277, 301, 333, 366, 370, 376, 384, 394, 402, 414, 430, 448, 456, 468, 484, 504, 520, 544, 576, 610, 618, 630, 646, 666, 682
Offset: 0

Views

Author

Omar E. Pol, Dec 16 2013

Keywords

Examples

			Illustration of initial terms:
-----------------------------------------------------
           Diagram            n     A233775(n)   a(n)
-----------------------------------------------------
              *               0         1         1
             /T\
            *---*             1         2         3
           /T\ /T\
          *---*---*           2         3         6
         /T\     /T\
        *---*   *---*         3         4        10
       /T\ /T\ /T\ /T\
      *---*---*---*---*       4         5        15
     /T\             /T\
    *---*           *---*     5         4        19
-----------------------------------------------------
After five stages the number of "black" triangles in the structure is A006046(5) = 11. The total number of vertices is 19, so a(5) = 19.
		

Crossrefs

Partial sums of A233775.

Programs

  • Mathematica
    A233775[n_] := If[n == 0, 1, (2^IntegerExponent[n, 2]+1)*2^(DigitSum[n, 2]-1)];
    Accumulate[Array[A233775, 100, 0]] (* Paolo Xausa, Aug 07 2024 *)

Formula

a(2^k) = A067771(k), k >= 0.

A079004 Least x>=3 such that F(x)==1 (mod 3^n) where F(x) denotes the x-th Fibonacci number (A000045).

Original entry on oeis.org

7, 10, 10, 34, 106, 322, 970, 2914, 8746, 26242, 78730, 236194, 708586, 2125762, 6377290, 19131874, 57395626, 172186882, 516560650, 1549681954, 4649045866, 13947137602, 41841412810, 125524238434, 376572715306, 1129718145922
Offset: 1

Views

Author

Benoit Cloitre, Feb 01 2003

Keywords

References

  • R. L. Graham, D. E. Knuth and O. Patashnick, "Concrete Mathematics", second edition, Addison Wesley, ex. 6.59.

Crossrefs

Programs

  • Maple
    7, 10, seq(4*3^(n-2)-2,n=3..50); # Robert Israel, Jan 15 2015
  • Mathematica
    a=2;lst={7,10};Do[a=a*3+4;AppendTo[lst,a],{n,0,5!}];lst (* Vladimir Joseph Stephan Orlovsky, Dec 25 2008 *)
    LinearRecurrence[{4,-3},{7,10,10,34},40] (* Harvey P. Dale, Aug 16 2024 *)
  • PARI
    a(n)=if(n<0,0,x=3; while((fibonacci(x)-1)%(3^n)>0,x++); x)

Formula

a(1)=7, a(2)=10, a(3)=10; for n>3, a(n) = 3*a(n-1) + 4.
a(n) = 4*3^(n-2)-2 for n >= 3.
G.f.: 8*x^2+(23/3)*x+14/9+2/(x-1)-4/(9*(3*x-1)). - Robert Israel, Jan 15 2015

Extensions

Formula corrected by Robert Israel, Jan 15 2015
Showing 1-10 of 20 results. Next