Original entry on oeis.org
3, 6, 12, 24, 48, 96, 192, 384, 768, 1536, 3072, 6144, 12288, 24576, 49152, 98304, 196608, 393216, 786432, 1572864, 3145728, 6291456, 12582912, 25165824, 50331648, 100663296, 201326592, 402653184, 805306368, 1610612736, 3221225472, 6442450944, 12884901888
Offset: 0
- Jason I. Brown, Discrete Structures and Their Interactions, CRC Press, 2013, p. 71.
- T. Ito, Method, equipment, program and storage media for producing tables, Publication number JP2004-272104A, Japan Patent Office (written in Japanese, a(2)=12, a(3)=24, a(4)=48, a(5)=96, a(6)=192, a(7)=384 (a(7)=284 was corrected)).
- Kenji Ohkuma, Atsuhiro Yamagishi and Toru Ito, Cryptography Research Group Technical report, IT Security Center, Information-Technology Promotion Agency, JAPAN.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- K. Bezdek and Tudor Zamfirescu, A Characterization of 3-dimensional Convex Sets with an Infinite X-ray Number, in: Coll. Math. Soc. J. Bolyai 63., Intuitive Geometry, Szeged (Hungary), North-Holland, Amsterdam, 1991, pp. 33-38.
- Allan Bickle, Properties of Sierpinski Triangle Graphs, Springer PROMS 448 (2021) 295-303.
- Yuri Brudnyi and Pavel Shvartsman, Generalizations of Whitney's extension theorem, International Mathematics Research Notices 1994.3 (1994): 129-139.
- J. W. Cannon and P. Wagreich, Growth functions of surface groups, Mathematische Annalen, 1992, Volume 293, pp. 239-257. See Prop. 3.1.
- Tomislav Došlić, Kepler-Bouwkamp Radius of Combinatorial Sequences, Journal of Integer Sequences, Vol. 17, 2014, #14.11.3.
- John Elias, Illustration: 2^n+1 hexagram perimeters
- Lukas Fleischer and Jeffrey Shallit, Words With Few Palindromes, Revisited, arxiv preprint arXiv:1911.12464 [cs.FL], November 27 2019.
- A. Hinz, S. Klavzar, and S. Zemljic, A survey and classification of Sierpinski-type graphs, Discrete Applied Mathematics 217 3 (2017), 565-600.
- Tanya Khovanova, Recursive Sequences
- Roberto Rinaldi and Marco Ripà, Optimal cycles enclosing all the nodes of a k-dimensional hypercube, arXiv:2212.11216 [math.CO], 2022.
- Edwin Soedarmadji, Latin Hypercubes and MDS Codes, Discrete Mathematics, Volume 306, Issue 12, Jun 28 2006, Pages 1232-1239
- D. Stephen, Topology on Finite Sets, American Mathematical Monthly, 75: 739 - 741, 1968.
- Index entries for linear recurrences with constant coefficients, signature (2).
Coordination sequences for triangular tilings of hyperbolic space:
A001630,
A007283,
A054886,
A078042,
A096231,
A163876,
A179070,
A265057,
A265058,
A265059,
A265060,
A265061,
A265062,
A265063,
A265064,
A265065,
A265066,
A265067,
A265068,
A265069,
A265070,
A265071,
A265072,
A265073,
A265074,
A265075,
A265076,
A265077.
Subsequence of the following sequences:
A029744,
A029747,
A029748,
A029750,
A362804 (after 3),
A364494,
A364496,
A364289,
A364291,
A364292,
A364295,
A364497,
A364964,
A365422.
Row sums of (5, 1)-Pascal triangle
A093562 and of (1, 5) Pascal triangle
A096940.
-
a007283 = (* 3) . (2 ^)
a007283_list = iterate (* 2) 3
-- Reinhard Zumkeller, Mar 18 2012, Feb 20 2012
-
[3*2^n: n in [0..30]]; // Vincenzo Librandi, May 18 2011
-
A007283:=n->3*2^n; seq(A007283(n), n=0..50); # Wesley Ivan Hurt, Dec 03 2013
-
Table[3(2^n), {n, 0, 32}] (* Alonso del Arte, Mar 24 2011 *)
-
A007283(n):=3*2^n$
makelist(A007283(n),n,0,30); /* Martin Ettl, Nov 11 2012 */
-
a(n)=3*2^n
-
a(n)=3<Charles R Greathouse IV, Oct 10 2012
-
def A007283(n): return 3<Chai Wah Wu, Feb 14 2023
-
(List.fill(40)(2: BigInt)).scanLeft(1: BigInt)( * ).map(3 * ) // _Alonso del Arte, Nov 28 2019
A052548
a(n) = 2^n + 2.
Original entry on oeis.org
3, 4, 6, 10, 18, 34, 66, 130, 258, 514, 1026, 2050, 4098, 8194, 16386, 32770, 65538, 131074, 262146, 524290, 1048578, 2097154, 4194306, 8388610, 16777218, 33554434, 67108866, 134217730, 268435458, 536870914, 1073741826, 2147483650
Offset: 0
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
- Vincenzo Librandi, Table of n, a(n) for n = 0..240
- Nicholas R. Beaton, Philippe Flajolet, and Anthony J. Guttmann, The Enumeration of Prudent Polygons by Area and its Unusual Asymptotics, arXiv:1011.6195 [math.CO], Nov 29, 2010.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 485
- Popular Computing (Calabasas, CA), Sieves: Problem 43, Vol. 2 (No. 13, Apr 1974), pp. 6-7. This is Sieve #6 with K=2. [Annotated and scanned copy]
- Eric Weisstein's World of Mathematics, Bertrand's Postulate
- Index entries for sequences generated by sieves
- Index entries for linear recurrences with constant coefficients, signature (3,-2).
Apart from initial term, same as
A056469.
Cf.
A003462,
A007051,
A034472,
A024023,
A067771,
A029858,
A134931,
A115099,
A100774,
A079004,
A058481,
A100585,
A100586,
A058896,
A000918,
A173786.
-
a052548 = (+ 2) . a000079
a052548_list = iterate ((subtract 2) . (* 2)) 3
-- Reinhard Zumkeller, Sep 05 2015
-
[2^n + 2: n in [0..35]]; // Vincenzo Librandi, Apr 29 2011
-
spec := [S,{S=Union(Sequence(Union(Z,Z)),Sequence(Z),Sequence(Z))},unlabeled]: seq(combstruct[count](spec,size=n), n=0..20);
-
2^Range[0,40]+2 (* Harvey P. Dale, Jun 26 2012 *)
-
a(n)=1<Charles R Greathouse IV, Nov 20 2011
A029858
a(n) = (3^n - 3)/2.
Original entry on oeis.org
0, 3, 12, 39, 120, 363, 1092, 3279, 9840, 29523, 88572, 265719, 797160, 2391483, 7174452, 21523359, 64570080, 193710243, 581130732, 1743392199, 5230176600, 15690529803, 47071589412, 141214768239
Offset: 1
For the Sierpiński triangle, Level 1 is a triangle, so a(1) = 0.
Level 2 has three corners (degree 2) and three degree 4 vertices, so a(2) = 3.
The level 2 Hanoi graph has 3 triangles joined by 3 edges, so a(2+1) = 12.
- Vincenzo Librandi, Table of n, a(n) for n = 1..300
- Allan Bickle, Properties of Sierpinski Triangle Graphs, Springer PROMS 448 (2021) 295-303.
- Natalia Agudelo Muñetón, Agustín Moreno Cañadas, Pedro Fernando Fernández Espinosa, and Isaías David Marín Gaviria, Brauer Configuration Algebras and Their Applications in Graph Energy Theory, Mathematics (2021) Vol. 9, 3042.
- Alex Born, Cor A. J. Hukrnes, and Gerhard J. Woeginger, How to detect a counterfeit coin: adaptive versus non-adaptive solutions, Inf. Proc. Lett. 86 (2003) 137-141.
- Gary Darby, The Counterfeit Coin
- Madeleine Goertz and Aaron Williams, The Quaternary Gray Code and How It Can Be Used to Solve Ziggurat and Other Ziggu Puzzles, arXiv:2411.19291 [math.CO], 2024. See p. 17.
- Lorenz Halbeisen and Norbert Hungerbuhler, The general counterfeit coin problem, Discr. Math 147 (1-3) (1995) 139-150, Theorem 1 with b=1.
- Andreas Hinz, Sandi Klavzar, and Sara Sabrina Zemljic, A survey and classification of Sierpinski-type graphs, Discrete Applied Mathematics 217 3 (2017), 565-600.
- Bennet Manvel, Counterfeit coin problems, Math. Mag. 50 (2) (1977) 90-92, theorem 2.
- Marco Ripà, Solving the 106 years old 3^k points problem with the clockwise-algorithm, Journal of Fundamental Mathematics and Applications, 2020, 3(2), 84-97.
- Allen Stenger and Jack Wert, The Twelve Coins (or Twelve bags of Gold)
- Eric Weisstein's World of Mathematics, Apollonian Network
- Eric Weisstein's World of Mathematics, Edge Count
- Eric Weisstein's World of Mathematics, Hanoi Graph
- Eric Weisstein's World of Mathematics, Minimum Vertex Cut
- Index entries for linear recurrences with constant coefficients, signature (4,-3).
A058481
a(n) = 3^n - 2.
Original entry on oeis.org
1, 7, 25, 79, 241, 727, 2185, 6559, 19681, 59047, 177145, 531439, 1594321, 4782967, 14348905, 43046719, 129140161, 387420487, 1162261465, 3486784399, 10460353201, 31381059607, 94143178825, 282429536479, 847288609441
Offset: 1
G.f. = x + 7*x^2 + 25*x^3 + 79*x^4 + 241*x^5 + 727*x^6 + 2185*x^7 + 6559*x^8 + ...
a(1) = 1;
a(2) = 3 + 1 + 3 = 7;
a(3) = 9 + 3 + 1 + 3 + 9 = 25;
a(4) = 27 + 9 + 3 + 1 + 3 + 9 + 27 = 79; etc. - _Philippe Deléham_, Feb 24 2014
-
A058481:=n->3^n-2; seq(A058481(n), n=1..30); # Wesley Ivan Hurt, Mar 24 2014
-
a=1;lst={a};Do[a=a*3+4;AppendTo[lst,a],{n,0,5!}];lst (* Vladimir Joseph Stephan Orlovsky, Dec 25 2008 *)
3^Range[30]-2 (* Harvey P. Dale, Mar 28 2011 *)
LinearRecurrence[{4, -3}, {1, 7}, 25] (* G. C. Greubel, Aug 25 2016 *)
-
a(n)=3^n-2 \\ Charles R Greathouse IV, Feb 06 2017
-
{a(n) = if( n<1, 0, 3^n - 2)}; /* Michael Somos, Feb 17 2017 */
More terms from Larry Reeves (larryr(AT)acm.org), Dec 04 2000
A100774
a(n) = 2*(3^n - 1).
Original entry on oeis.org
0, 4, 16, 52, 160, 484, 1456, 4372, 13120, 39364, 118096, 354292, 1062880, 3188644, 9565936, 28697812, 86093440, 258280324, 774840976, 2324522932, 6973568800, 20920706404, 62762119216, 188286357652, 564859072960, 1694577218884
Offset: 0
Pawel P. Mazur (Pawel.Mazur(AT)pwr.wroc.pl), Apr 06 2005
Cf.
A003462,
A007051,
A024023,
A029858,
A034472,
A048473,
A058481,
A067771,
A079004,
A115099,
A134931.
-
[2*(3^n - 1): n in [0..25] ]; // Vincenzo Librandi, Apr 30 2011
-
Table[2 (3^n - 1), {n, 0, 24}] (* Alonso del Arte, Nov 08 2012 *)
2 (3^Range[0, 20] - 1) (* Eric W. Weisstein, Mar 13 2018 *)
LinearRecurrence[{4, -3}, {4, 16}, {0, 20}] (* Eric W. Weisstein, Mar 13 2018 *)
CoefficientList[Series[4 x/(1 - 4 x + 3 x^2), {x, 0, 20}], x] (* Eric W. Weisstein, Mar 13 2018 *)
-
A100774(n):=2*(3^n - 1)$
makelist(A100774(n),n,0,30); /* Martin Ettl, Nov 09 2012 */
-
a(n)=2*3^n-2 \\ Charles R Greathouse IV, Nov 09 2012
A134931
a(n) = (5*3^n-3)/2.
Original entry on oeis.org
1, 6, 21, 66, 201, 606, 1821, 5466, 16401, 49206, 147621, 442866, 1328601, 3985806, 11957421, 35872266, 107616801, 322850406, 968551221, 2905653666, 8716961001, 26150883006, 78452649021, 235357947066, 706073841201, 2118221523606
Offset: 0
-
[(5*3^n-3)/2: n in [0..30]]; // Vincenzo Librandi, Jun 05 2011
-
seq((5*3^n-3)/2, n= 0..25); # Gary Detlefs, Jun 22 2010
-
a=1; lst={a}; Do[a=a*3+3; AppendTo[lst,a], {n,0,100}]; lst (* Vladimir Joseph Stephan Orlovsky, Dec 25 2008 *)
Table[(5 3^n - 9)/6, {n, 20}] (* Eric W. Weisstein, Dec 01 2017 *)
(5 3^Range[20] - 9)/6 (* Eric W. Weisstein, Dec 01 2017 *)
LinearRecurrence[{4, -3}, {1, 6}, 20] (* Eric W. Weisstein, Dec 01 2017 *)
CoefficientList[Series[(1 + 2 x)/(1 - 4 x + 3 x^2), {x, 0, 20}], x] (* Eric W. Weisstein, Dec 01 2017 *)
-
a(n) = (5*3^n-3)/2; /* Joerg Arndt, Apr 14 2013 */
A115099
a(0)=4, a(n) = 3*a(n-1) - 4.
Original entry on oeis.org
4, 8, 20, 56, 164, 488, 1460, 4376, 13124, 39368, 118100, 354296, 1062884, 3188648, 9565940, 28697816, 86093444, 258280328, 774840980, 2324522936, 6973568804, 20920706408, 62762119220, 188286357656, 564859072964, 1694577218888, 5083731656660, 15251194969976
Offset: 0
A193277
Triangle T(n,k), n>=1, 0<=k<=(3+3^n)/2, read by rows: row n gives the coefficients of the chromatic polynomial of the Sierpinski gasket graph S_n, highest powers first.
Original entry on oeis.org
1, -3, 2, 0, 1, -9, 32, -56, 48, -16, 0, 1, -27, 339, -2625, 14016, -54647, 160663, -362460, 631828, -848736, 866640, -653248, 343744, -112896, 17408, 0, 1, -81, 3204, -82476, 1553454, -22823259, 272286183, -2711405961, 22990179324
Offset: 1
3 example graphs: o
. / \
. o---o
. / \ / \
. o o---o---o
. / \ / \ / \
. o o---o o---o o---o
. / \ / \ / \ / \ / \ / \ / \
. o---o o---o---o o---o---o---o---o
Graph: S_1 S_2 S_3
Vertices: 3 6 15
Edges: 3 9 27
The Sierpinski graph S_1 is equal to the cycle graph C_3 with chromatic polynomial q^3 -3*q^2 +2*q => [1, -3, 2, 0].
Triangle T(n,k) begins:
1, -3, 2, 0;
1, -9, 32, -56, 48, -16, ...
1, -27, 339, -2625, 14016, -54647, ...
1, -81, 3204, -82476, 1553454, -22823259, ...
1, -243, 29295, -2336013, 138604878, -6526886841, ...
1, -729, 265032, -64069056, 11585834028, -1671710903793, ...
1, -2187, 2389419, -1738877625, 948268049436, -413339609377179, ...
A233774
Total number of vertices in the first n rows of Sierpinski gasket, with a(0) = 1.
Original entry on oeis.org
1, 3, 6, 10, 15, 19, 25, 33, 42, 46, 52, 60, 70, 78, 90, 106, 123, 127, 133, 141, 151, 159, 171, 187, 205, 213, 225, 241, 261, 277, 301, 333, 366, 370, 376, 384, 394, 402, 414, 430, 448, 456, 468, 484, 504, 520, 544, 576, 610, 618, 630, 646, 666, 682
Offset: 0
Illustration of initial terms:
-----------------------------------------------------
Diagram n A233775(n) a(n)
-----------------------------------------------------
* 0 1 1
/T\
*---* 1 2 3
/T\ /T\
*---*---* 2 3 6
/T\ /T\
*---* *---* 3 4 10
/T\ /T\ /T\ /T\
*---*---*---*---* 4 5 15
/T\ /T\
*---* *---* 5 4 19
-----------------------------------------------------
After five stages the number of "black" triangles in the structure is A006046(5) = 11. The total number of vertices is 19, so a(5) = 19.
-
A233775[n_] := If[n == 0, 1, (2^IntegerExponent[n, 2]+1)*2^(DigitSum[n, 2]-1)];
Accumulate[Array[A233775, 100, 0]] (* Paolo Xausa, Aug 07 2024 *)
A079004
Least x>=3 such that F(x)==1 (mod 3^n) where F(x) denotes the x-th Fibonacci number (A000045).
Original entry on oeis.org
7, 10, 10, 34, 106, 322, 970, 2914, 8746, 26242, 78730, 236194, 708586, 2125762, 6377290, 19131874, 57395626, 172186882, 516560650, 1549681954, 4649045866, 13947137602, 41841412810, 125524238434, 376572715306, 1129718145922
Offset: 1
- R. L. Graham, D. E. Knuth and O. Patashnick, "Concrete Mathematics", second edition, Addison Wesley, ex. 6.59.
-
7, 10, seq(4*3^(n-2)-2,n=3..50); # Robert Israel, Jan 15 2015
-
a=2;lst={7,10};Do[a=a*3+4;AppendTo[lst,a],{n,0,5!}];lst (* Vladimir Joseph Stephan Orlovsky, Dec 25 2008 *)
LinearRecurrence[{4,-3},{7,10,10,34},40] (* Harvey P. Dale, Aug 16 2024 *)
-
a(n)=if(n<0,0,x=3; while((fibonacci(x)-1)%(3^n)>0,x++); x)
Showing 1-10 of 20 results.
Comments