A182368
Triangle T(n,k), n>=1, 0<=k<=n^2, read by rows: row n gives the coefficients of the chromatic polynomial of the square grid graph G_(n,n), highest powers first.
Original entry on oeis.org
1, 0, 1, -4, 6, -3, 0, 1, -12, 66, -216, 459, -648, 594, -323, 79, 0, 1, -24, 276, -2015, 10437, -40614, 122662, -292883, 557782, -848056, 1022204, -960627, 682349, -346274, 112275, -17493, 0, 1, -40, 780, -9864, 90798, -647352, 3714180, -17590911, 69997383
Offset: 1
3 example graphs: o---o---o
. | | |
. o---o o---o---o
. | | | | |
. o o---o o---o---o
Graph: G_(1,1) G_(2,2) G_(3,3)
Vertices: 1 4 9
Edges: 0 4 12
The square grid graph G_(2,2) is the cycle graph C_4 with chromatic polynomial q^4 -4*q^3 +6*q^2 -3*q => row 2 = [1, -4, 6, -3, 0].
Triangle T(n,k) begins:
1, 0;
1, -4, 6, -3, 0;
1, -12, 66, -216, 459, -648, 594, ...
1, -24, 276, -2015, 10437, -40614, 122662, ...
1, -40, 780, -9864, 90798, -647352, 3714180, ...
1, -60, 1770, -34195, 486210, -5421612, 49332660, ...
1, -84, 3486, -95248, 1926585, -30755376, 403410654, ...
1, -112, 6216, -227871, 6205479, -133865298, 2382122274, ...
1, -144, 10296, -487280, 17169852, -480376848, 11114098408, ...
...
Sums of absolute values of row elements give:
A080690(n).
-
Reverse /@ CoefficientList[Table[ChromaticPolynomial[GridGraph[{n, n}], x], {n, 5}], x] // Flatten (* Eric W. Weisstein, May 01 2017 *)
A182797
Square array A(n,k), n>=1, k>=1, read by antidiagonals: A(n,k) is the number of n-colorings of the k X k X k triangular grid.
Original entry on oeis.org
1, 0, 2, 0, 0, 3, 0, 0, 6, 4, 0, 0, 6, 24, 5, 0, 0, 6, 192, 60, 6, 0, 0, 6, 2112, 1620, 120, 7, 0, 0, 6, 32640, 98820, 7680, 210, 8, 0, 0, 6, 718080, 13638780, 1574400, 26250, 336, 9, 0, 0, 6, 22665216, 4260983940, 1034019840, 13676250, 72576, 504, 10
Offset: 1
Square array A(n,k) begins:
1, 0, 0, 0, 0, 0, ...
2, 0, 0, 0, 0, 0, ...
3, 6, 6, 6, 6, 6, ...
4, 24, 192, 2112, 32640, 718080, ...
5, 60, 1620, 98820, 13638780, 4260983940, ...
6, 120, 7680, 1574400, 1034019840, 2175789895680, ...
Columns k=1-11 give:
A000027,
A007531,
A182788,
A182789,
A182790,
A182791,
A182792,
A182793,
A182794,
A182795,
A182796.
Rows n=1-10 give:
A000007(k-1),
A000038(k-1),
A040006(k-1),
A182798,
A153467*4,
A153468*5,
A153469*6,
A153470*7,
A153471*8,
A153472*9,
A153473*10.
A212084
Triangle T(n,k), n>=0, 0<=k<=2n, read by rows: row n gives the coefficients of the chromatic polynomial of the complete bipartite graph K_(n,n), highest powers first.
Original entry on oeis.org
1, 1, -1, 0, 1, -4, 6, -3, 0, 1, -9, 36, -75, 78, -31, 0, 1, -16, 120, -524, 1400, -2236, 1930, -675, 0, 1, -25, 300, -2200, 10650, -34730, 75170, -102545, 78610, -25231, 0, 1, -36, 630, -6915, 52080, -279142, 1074822, -2942445, 5552680, -6796926, 4787174
Offset: 0
3 example graphs: +-----------+
. o o o o o o |
. | |\ /| |\ /|\ /|\ /
. | | X | | X | X | X
. | |/ \| |/ \|/ \|/ \
. o o o o o o |
. +-----------+
Graph: K_(1,1) K_(2,2) K_(3,3)
Vertices: 2 4 6
Edges: 1 4 9
The complete bipartite graph K_(2,2) is the cycle graph C_4 with chromatic polynomial q^4 -4*q^3 +6*q^2 -3*q => row 2 = [1, -4, 6, -3, 0].
Triangle T(n,k) begins:
1;
1, -1, 0;
1, -4, 6, -3, 0;
1, -9, 36, -75, 78, -31, 0;
1, -16, 120, -524, 1400, -2236, 1930, -675, ...
1, -25, 300, -2200, 10650, -34730, 75170, -102545, ...
1, -36, 630, -6915, 52080, -279142, 1074822, -2942445, ...
...
Row sums and last elements of rows give:
A000007.
Sums of absolute values of row elements give:
A048163(n+1).
-
P:= n-> add(Stirling2(n, k) *mul(q-i, i=0..k-1) *(q-k)^n, k=0..n):
T:= n-> seq(coeff(P(n), q, 2*n-k), k=0..2*n):
seq(T(n), n=1..8);
A182283
Number of triangular n X n X n arrays colored with integers 0 upwards introduced in row major order, with no element equal to any neighbor.
Original entry on oeis.org
1, 1, 15, 3429, 18172005, 3030361658604, 20538495213667066533, 7069329642959332230532689983, 150574890630606350105309341350824904669, 237075065354315062816111131522815337395866137560373, 32430625006159571889921247597353572731767630164652210957593666925
Offset: 1
Some solutions for n=4
.....0........0........0........0........0........0........0........0
....1.2......1.2......1.2......1.2......1.2......1.2......1.2......1.2
...2.0.3....3.4.0....2.0.1....0.3.4....3.4.0....3.4.0....3.4.5....3.4.0
..3.1.4.1..4.2.5.4..3.1.3.0..4.5.2.5..0.5.3.6..4.5.3.6..5.0.2.1..1.2.3.5
A295190
Chromatic invariant of the n-triangular grid graph.
Original entry on oeis.org
1, 1, 1, 5, 97, 6739, 1611097, 1295101469, 3449859538455, 30155591559236245, 859063676925680110319, 79361177641450830904290293
Offset: 0
Showing 1-5 of 5 results.
Comments