A185457 a(n) = abs( Im((2+i)^(2^n)) ).
1, 4, 24, 336, 354144, 116749235904, 22940770664883067253376, 182503181432559739767250904458105698387204864
Offset: 0
Examples
y(2)=24 since x(1)=3, y(1)=4 are the two legs of Pythagorean triangle obtained by p=2, q=1; second iteration p=3, q=4 gives 2*3*4=24.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..11
Programs
-
Maple
a:= n-> abs(Im((2+I)^(2^n))): seq(a(n), n=0..8); # Alois P. Heinz, Apr 25 2013
-
Mathematica
Table[Abs[Im[(2 + I)^(2^n)]], {n, 0, 10}] (* G. C. Greubel, Jul 07 2017 *)
-
PARI
a(n) = abs(imag((2+I)^(2^n))); \\ Joerg Arndt, Apr 25 2013
-
Python
from sympy import im, I def a(n): return abs(im((2 + I)**(2**n))) print([a(n) for n in range(11)]) # Indranil Ghosh, Jul 08 2017
Formula
a(n) = abs( Im((2+i)^(2^n)) ).
Extensions
Better name from Joerg Arndt, Apr 25 2013
Comments