A185505 a(n) = (7*n^4 + 5*n^2)/12.
1, 11, 51, 156, 375, 771, 1421, 2416, 3861, 5875, 8591, 12156, 16731, 22491, 29625, 38336, 48841, 61371, 76171, 93500, 113631, 136851, 163461, 193776, 228125, 266851, 310311, 358876, 412931, 472875, 539121, 612096, 692241, 780011, 875875, 980316, 1093831, 1216931, 1350141, 1494000, 1649061, 1815891, 1995071
Offset: 1
Examples
a(1)=(7+5)/12, a(2)=(7*16+5*4)/12.
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
Programs
-
Mathematica
Table[(7*n^4+5*n^2)/12, {n,1,60}] LinearRecurrence[{5,-10,10,-5,1},{1,11,51,156,375},50] (* Harvey P. Dale, Jan 26 2024 *)
-
PARI
a(n)=(7*n^4+5*n^2)/12 \\ Charles R Greathouse IV, Sep 05 2016
Formula
a(n) = (7*n^4 + 5*n^2)/12.
From Chai Wah Wu, Sep 05 2016: (Start)
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) for n > 5.
G.f.: x*(1 + x)*(1 + 5*x + x^2)/(1 - x)^5. (End)
E.g.f.: (1/12)*x*(12 + 54*x + 42*x^2 + 7*x^3)*exp(x). - G. C. Greubel, Jul 07 2017
Comments