cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A185505 a(n) = (7*n^4 + 5*n^2)/12.

Original entry on oeis.org

1, 11, 51, 156, 375, 771, 1421, 2416, 3861, 5875, 8591, 12156, 16731, 22491, 29625, 38336, 48841, 61371, 76171, 93500, 113631, 136851, 163461, 193776, 228125, 266851, 310311, 358876, 412931, 472875, 539121, 612096, 692241, 780011, 875875, 980316, 1093831, 1216931, 1350141, 1494000, 1649061, 1815891, 1995071
Offset: 1

Views

Author

Clark Kimberling, Jan 29 2011

Keywords

Comments

a(n) is the sum of terms in the square [1,n]x[1,n] of the natural number array A000027; e.g., the [1,3]x[1,3] square is
1..2..4
3..5..8
6..9..13,
so that a(1) = 1, a(2) = 1+2+3+5 = 11, a(3) = 1+2+3+4+5+6+8+9+13 = 51.
Partial sums of A063490. - Omar E. Pol, Oct 23 2019

Examples

			a(1)=(7+5)/12, a(2)=(7*16+5*4)/12.
		

Crossrefs

Programs

  • Mathematica
    Table[(7*n^4+5*n^2)/12, {n,1,60}]
    LinearRecurrence[{5,-10,10,-5,1},{1,11,51,156,375},50] (* Harvey P. Dale, Jan 26 2024 *)
  • PARI
    a(n)=(7*n^4+5*n^2)/12 \\ Charles R Greathouse IV, Sep 05 2016

Formula

a(n) = (7*n^4 + 5*n^2)/12.
From Chai Wah Wu, Sep 05 2016: (Start)
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) for n > 5.
G.f.: x*(1 + x)*(1 + 5*x + x^2)/(1 - x)^5. (End)
E.g.f.: (1/12)*x*(12 + 54*x + 42*x^2 + 7*x^3)*exp(x). - G. C. Greubel, Jul 07 2017