cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A185644 Triangular array E(n,k) counting, not necessarily connected, k-regular simple graphs on n vertices with girth exactly 4.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 2, 1, 0, 0, 1, 0, 0, 0, 0, 0, 5, 2, 1, 0, 0, 1, 0, 2, 0, 0, 0, 2, 21, 12, 1, 1, 0, 0, 2, 0, 31, 0, 0, 0, 0, 3, 103, 220, 7, 1, 1, 0, 0, 3, 0, 1606, 0, 1, 0, 0, 0, 5, 752, 16829, 388, 9, 1, 1, 0, 0, 5, 0, 193900, 0, 6, 0, 0, 0
Offset: 1

Views

Author

Jason Kimberley, Feb 22 2013

Keywords

Comments

In the n-th row 0 <= 2k <= n.

Examples

			01: 0;
02: 0, 0;
03: 0, 0;
04: 0, 0, 1;
05: 0, 0, 0;
06: 0, 0, 0, 1;
07: 0, 0, 0, 0;
08: 0, 0, 1, 2, 1;
09: 0, 0, 1, 0, 0;
10: 0, 0, 0, 5, 2, 1;
11: 0, 0, 1, 0, 2, 0;
12: 0, 0, 2, 21, 12, 1, 1;
13: 0, 0, 2, 0, 31, 0, 0;
14: 0, 0, 3, 103, 220, 7, 1, 1;
15: 0, 0, 3, 0, 1606, 0, 1, 0;
16: 0, 0, 5, 752, 16829, 388, 9, 1, 1;
17: 0, 0, 5, 0, 193900, 0, 6, 0, 0;
18: 0, 0, 7, 7385, 2452820, 406824, 267, 8, 1, 1;
19: 0, 0, 8, 0, 32670331, 0, 3727, 0, 0, 0;
20: 0, 0, 11, 91939, 456028487, 1125022326, 483012, 741, 13, 1, 1;
21: 0, 0, 12, 0, 6636066126, 0, 69823723, 0, 1, 0, 0;
22: 0, 0, 16, 1345933, 100135577863, 3813549359275, 14836130862, 2887493, ?, 14, 1;
		

Crossrefs

The sum of the n-th row of this sequence is A198314(n).
Not necessarily connected k-regular simple graphs girth exactly 4: A198314 (any k), this sequence (triangle); fixed k: A026797 (k=2), A185134 (k=3), A185144 (k=4).

Formula

E(n,k) = A186734(n,k) + A210704(n,k), noting the differing row lengths.
E(n,k) = A185304(n,k) - A185305(n,k), noting the differing row lengths.