cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A026797 Number of partitions of n in which the least part is 4.

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 2, 2, 3, 3, 5, 5, 7, 8, 11, 12, 16, 18, 24, 27, 34, 39, 50, 57, 70, 81, 100, 115, 140, 161, 195, 225, 269, 311, 371, 427, 505, 583, 688, 791, 928, 1067, 1248, 1434, 1668, 1914, 2223, 2546, 2945, 3370, 3889
Offset: 1

Views

Author

Keywords

Comments

a(n) is also the number of, not necessarily connected, 2-regular simple graphs girth exactly 4. - Jason Kimberley, Feb 22 2013

Crossrefs

Essentially the same as A008484.
Not necessarily connected 2-regular graphs with girth at least g [partitions into parts >= g]: A026807 (triangle); chosen g: A000041 (g=1 -- multigraphs with loops allowed), A002865 (g=2 -- multigraphs with loops forbidden), A008483 (g=3), A008484 (g=4), A185325(g=5), A185326 (g=6), A185327 (g=7), A185328 (g=8), A185329 (g=9).
Not necessarily connected 2-regular graphs with girth exactly g [partitions with smallest part g]: A026794 (triangle); chosen g: A002865 (g=2 -- multigraphs with at least one pair of parallel edges, but loops forbidden), A026796 (g=3), this sequence (g=4), A026798 (g=5), A026799 (g=6), A026800 (g=7), A026801 (g=8), A026802 (g=9), A026803 (g=10).
Not necessarily connected k-regular simple graphs girth exactly 4: A198314 (any k), A185644 (triangle); fixed k: this sequence (k=2), A185134 (k=3), A185144 (k=4).

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 60); [0,0,0] cat Coefficients(R!( x^4/(&*[1-x^(m+4): m in [0..70]]) )); // G. C. Greubel, Nov 03 2019
    
  • Maple
    seq(coeff(series(x^4/mul(1-x^(m+4), m=0..65), x, n+1), x, n), n = 1..60); # G. C. Greubel, Nov 03 2019
  • Mathematica
    Table[Count[IntegerPartitions[n],?(Min[#]==4&)],{n,60}] (* _Harvey P. Dale, May 13 2012 *)
    Rest@CoefficientList[Series[x^4/QPochhammer[x^4, x], {x,0,60}], x] (* G. C. Greubel, Nov 03 2019 *)
  • PARI
    my(x='x+O('x^60)); concat([0,0,0], Vec(x^4/prod(m=0,70, 1-x^(m+4)))) \\ G. C. Greubel, Nov 03 2019
    
  • Sage
    def A026797_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( x^4/product((1-x^(m+4)) for m in (0..60)) ).list()
    a=A026797_list(60); a[1:] # G. C. Greubel, Nov 03 2019

Formula

G.f.: x^4 * Product_{m>=4} 1/(1-x^m).
a(n) ~ exp(Pi*sqrt(2*n/3)) * Pi^3 / (12*sqrt(2)*n^(5/2)). - Vaclav Kotesovec, Jun 02 2018
G.f.: Sum_{k>=1} x^(4*k) / Product_{j=1..k-1} (1 - x^j). - Ilya Gutkovskiy, Nov 25 2020

A185134 Number of, not necessarily connected, 3-regular simple graphs on 2n vertices with girth exactly 4.

Original entry on oeis.org

0, 0, 0, 1, 2, 5, 21, 103, 752, 7385, 91939, 1345933, 22170664, 401399440, 7887389438, 166897766824, 3781593764772
Offset: 0

Views

Author

Jason Kimberley, Mar 21 2012

Keywords

Crossrefs

Not necessarily connected k-regular simple graphs girth exactly 4: A198314 (any k), A185644 (triangle); fixed k: A026797 (k=2), this sequence (k=3), A185144 (k=4).
Not necessarily connected 3-regular simple graphs on 2n vertices with girth exactly g: A185130 (triangle); fixed g: A185133 (g=3), this sequence (g=4), A185135 (g=5), A185136 (g=6).

Formula

a(n) = A185334(n) - A185335(n).
a(n) = A006924(n) + A185034(n).

A185144 Number of not necessarily connected 4-regular simple graphs on n vertices with girth exactly 4.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 2, 2, 12, 31, 220, 1606, 16829, 193900, 2452820, 32670331, 456028487, 6636066126, 100135577863, 1582718910743
Offset: 0

Views

Author

Jason Kimberley, Nov 04 2011

Keywords

Crossrefs

Not necessarily connected k-regular simple graphs girth exactly 4: A198314 (any k), A185644 (triangle); fixed k: A026797 (k=2), A185134 (k=3), this sequence (k=4).
A185143 (g=3), A185144 (g=4).
Not necessarily connected 4-regular simple graphs with girth exactly g: A185140 (triangle); fixed g: A185143 (g=3), this sequence (g=4).

Formula

a(n) = A184944(n) + A185044(n) = A185140(n,4).

Extensions

Corrected by Jason Kimberley, Jan 03 2013

A186734 Triangular array C(n,k) counting connected k-regular simple graphs on n vertices with girth exactly 4.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 5, 2, 1, 0, 0, 0, 0, 2, 0, 0, 0, 0, 20, 12, 1, 1, 0, 0, 0, 0, 31, 0, 0, 0, 0, 0, 101, 220, 7, 1, 1, 0, 0, 0, 0, 1606, 0, 1, 0, 0, 0, 0, 743, 16828, 388, 9, 1, 1, 0, 0, 0, 0, 193900, 0, 6, 0, 0, 0, 0, 0, 7350
Offset: 1

Views

Author

Jason Kimberley, Mar 20 2013

Keywords

Comments

In the n-th row 0 <= 2k <= n.

Examples

			01: 0;
02: 0, 0;
03: 0, 0;
04: 0, 0, 1;
05: 0, 0, 0;
06: 0, 0, 0, 1;
07: 0, 0, 0, 0;
08: 0, 0, 0, 2, 1;
09: 0, 0, 0, 0, 0;
10: 0, 0, 0, 5, 2, 1;
11: 0, 0, 0, 0, 2, 0;
12: 0, 0, 0, 20, 12, 1, 1;
13: 0, 0, 0, 0, 31, 0, 0;
14: 0, 0, 0, 101, 220, 7, 1, 1;
15: 0, 0, 0, 0, 1606, 0, 1, 0;
16: 0, 0, 0, 743, 16828, 388, 9, 1, 1;
17: 0, 0, 0, 0, 193900, 0, 6, 0, 0;
18: 0, 0, 0, 7350, 2452818, 406824, 267, 8, 1, 1;
19: 0, 0, 0, 0, 32670329, 0, 3727, 0, 0, 0;
20: 0, 0, 0, 91763, 456028472, 1125022325, 483012, 741, 13, 1, 1;
21: 0, 0, 0, 0, 6636066091, 0, 69823723, 0, 1, 0, 0;
		

Crossrefs

The sum of the n-th row of this sequence is A186744(n).
Triangular arrays C(n,k) counting connected simple k-regular graphs on n vertices with girth *exactly* g: A186733 (g=3), this sequence (g=4).
Triangular arrays C(n,k) counting connected simple k-regular graphs on n vertices with girth *at least* g: A068934 (g=3), A186714 (g=4).

Formula

C(n,k) = A186714(n,k) - A186715(n,k), noting the differing row lengths.
E(n,k) = A185644(n,k) - A210704(n,k), noting the differing row lengths.

A198314 Number of, not necessarily connected, regular simple graphs on n vertices with girth exactly 4.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 1, 0, 4, 1, 8, 3, 37, 33, 335, 1610, 17985, 193911, 2867313, 32674066, 1581626531, 6705889862
Offset: 0

Views

Author

Jason Kimberley, Dec 12 2012

Keywords

Crossrefs

Not necessarily connected k-regular simple graphs girth exactly 4: this sequence (any k), A185644 (triangle); fixed k: A026797 (k=2), A185134 (k=3), A185144 (k=4).
Not necessarily connected regular simple graphs girth exactly g: A198313 (g=3), this sequence (g=4), A198315 (g=5), A198316 (g=6), A198317 (g=7), A198318 (g=8).

Formula

a(n) = A186744(n) + A210714(n).
a(n) = A185314(n) - A185315(n).

Extensions

a(10) corrected from 9 to 8 by Jason Kimberley, Feb 22 2013
Showing 1-5 of 5 results.