cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A026797 Number of partitions of n in which the least part is 4.

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 2, 2, 3, 3, 5, 5, 7, 8, 11, 12, 16, 18, 24, 27, 34, 39, 50, 57, 70, 81, 100, 115, 140, 161, 195, 225, 269, 311, 371, 427, 505, 583, 688, 791, 928, 1067, 1248, 1434, 1668, 1914, 2223, 2546, 2945, 3370, 3889
Offset: 1

Views

Author

Keywords

Comments

a(n) is also the number of, not necessarily connected, 2-regular simple graphs girth exactly 4. - Jason Kimberley, Feb 22 2013

Crossrefs

Essentially the same as A008484.
Not necessarily connected 2-regular graphs with girth at least g [partitions into parts >= g]: A026807 (triangle); chosen g: A000041 (g=1 -- multigraphs with loops allowed), A002865 (g=2 -- multigraphs with loops forbidden), A008483 (g=3), A008484 (g=4), A185325(g=5), A185326 (g=6), A185327 (g=7), A185328 (g=8), A185329 (g=9).
Not necessarily connected 2-regular graphs with girth exactly g [partitions with smallest part g]: A026794 (triangle); chosen g: A002865 (g=2 -- multigraphs with at least one pair of parallel edges, but loops forbidden), A026796 (g=3), this sequence (g=4), A026798 (g=5), A026799 (g=6), A026800 (g=7), A026801 (g=8), A026802 (g=9), A026803 (g=10).
Not necessarily connected k-regular simple graphs girth exactly 4: A198314 (any k), A185644 (triangle); fixed k: this sequence (k=2), A185134 (k=3), A185144 (k=4).

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 60); [0,0,0] cat Coefficients(R!( x^4/(&*[1-x^(m+4): m in [0..70]]) )); // G. C. Greubel, Nov 03 2019
    
  • Maple
    seq(coeff(series(x^4/mul(1-x^(m+4), m=0..65), x, n+1), x, n), n = 1..60); # G. C. Greubel, Nov 03 2019
  • Mathematica
    Table[Count[IntegerPartitions[n],?(Min[#]==4&)],{n,60}] (* _Harvey P. Dale, May 13 2012 *)
    Rest@CoefficientList[Series[x^4/QPochhammer[x^4, x], {x,0,60}], x] (* G. C. Greubel, Nov 03 2019 *)
  • PARI
    my(x='x+O('x^60)); concat([0,0,0], Vec(x^4/prod(m=0,70, 1-x^(m+4)))) \\ G. C. Greubel, Nov 03 2019
    
  • Sage
    def A026797_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( x^4/product((1-x^(m+4)) for m in (0..60)) ).list()
    a=A026797_list(60); a[1:] # G. C. Greubel, Nov 03 2019

Formula

G.f.: x^4 * Product_{m>=4} 1/(1-x^m).
a(n) ~ exp(Pi*sqrt(2*n/3)) * Pi^3 / (12*sqrt(2)*n^(5/2)). - Vaclav Kotesovec, Jun 02 2018
G.f.: Sum_{k>=1} x^(4*k) / Product_{j=1..k-1} (1 - x^j). - Ilya Gutkovskiy, Nov 25 2020

A184944 Number of connected 4-regular simple graphs on n vertices with girth exactly 4.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 2, 2, 12, 31, 220, 1606, 16828, 193900, 2452818, 32670329, 456028472, 6636066091, 100135577616, 1582718909051
Offset: 0

Views

Author

Jason Kimberley, Jan 26 2011

Keywords

Examples

			a(0)=0 because even though the null graph (on zero vertices) is vacuously 4-regular and connected, since it is acyclic, it has infinite girth.
The a(8)=1 graph is the complete bipartite graph K_{4,4}.
		

Crossrefs

4-regular simple graphs with girth exactly 4: this sequence (connected), A185044 (disconnected), A185144 (not necessarily connected).
Connected k-regular simple graphs with girth exactly 4: A006924 (k=3), this sequence (k=4), A184954 (k=5), A184964 (k=6), A184974 (k=7).
Connected 4-regular simple graphs with girth at least g: A006820 (g=3), A033886 (g=4), A058343 (g=5), A058348 (g=6).
Connected 4-regular simple graphs with girth exactly g: A184943 (g=3), this sequence (g=4), A184945 (g=5).

Formula

a(n) = A033886(n) - A058343(n).

Extensions

a(23) was appended by the author once A033886(23) was known, Nov 03 2011

A185134 Number of, not necessarily connected, 3-regular simple graphs on 2n vertices with girth exactly 4.

Original entry on oeis.org

0, 0, 0, 1, 2, 5, 21, 103, 752, 7385, 91939, 1345933, 22170664, 401399440, 7887389438, 166897766824, 3781593764772
Offset: 0

Views

Author

Jason Kimberley, Mar 21 2012

Keywords

Crossrefs

Not necessarily connected k-regular simple graphs girth exactly 4: A198314 (any k), A185644 (triangle); fixed k: A026797 (k=2), this sequence (k=3), A185144 (k=4).
Not necessarily connected 3-regular simple graphs on 2n vertices with girth exactly g: A185130 (triangle); fixed g: A185133 (g=3), this sequence (g=4), A185135 (g=5), A185136 (g=6).

Formula

a(n) = A185334(n) - A185335(n).
a(n) = A006924(n) + A185034(n).

A185143 Number of not necessarily connected 4-regular simple graphs on n vertices with girth exactly 3.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 1, 2, 5, 16, 58, 264, 1535, 10755, 87973, 803973, 8020967, 86029760, 983431053, 11913921910, 152352965278, 2050065073002, 28951233955602, 428086557232387
Offset: 0

Views

Author

Jason Kimberley, Mar 12 2012

Keywords

Crossrefs

4-regular simple graphs with girth exactly 3: A184943 (connected), A185043 (disconnected), this sequence (not necessarily connected).
Not necessarily connected k-regular simple graphs girth exactly 3: A198313 (any k), A185643 (triangle); fixed k: A026796 (k=2), A185133 (k=3), this sequence (k=4), A185153 (k=5), A185163 (k=6).
Not necessarily connected 4-regular simple graphs with girth exactly g: A185140 (triangle); fixed g: this sequence (g=3), A185144 (g=4).

Formula

a(n) = A033301(n) - A185344(n).
a(n) = A184943(n) + A185043(n).

Extensions

a(22) corrected and a(23) appended, due to the correction and extension of A033301 by Andrew Howroyd, from Jason Kimberley, Mar 14 2020

A198314 Number of, not necessarily connected, regular simple graphs on n vertices with girth exactly 4.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 1, 0, 4, 1, 8, 3, 37, 33, 335, 1610, 17985, 193911, 2867313, 32674066, 1581626531, 6705889862
Offset: 0

Views

Author

Jason Kimberley, Dec 12 2012

Keywords

Crossrefs

Not necessarily connected k-regular simple graphs girth exactly 4: this sequence (any k), A185644 (triangle); fixed k: A026797 (k=2), A185134 (k=3), A185144 (k=4).
Not necessarily connected regular simple graphs girth exactly g: A198313 (g=3), this sequence (g=4), A198315 (g=5), A198316 (g=6), A198317 (g=7), A198318 (g=8).

Formula

a(n) = A186744(n) + A210714(n).
a(n) = A185314(n) - A185315(n).

Extensions

a(10) corrected from 9 to 8 by Jason Kimberley, Feb 22 2013

A185644 Triangular array E(n,k) counting, not necessarily connected, k-regular simple graphs on n vertices with girth exactly 4.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 2, 1, 0, 0, 1, 0, 0, 0, 0, 0, 5, 2, 1, 0, 0, 1, 0, 2, 0, 0, 0, 2, 21, 12, 1, 1, 0, 0, 2, 0, 31, 0, 0, 0, 0, 3, 103, 220, 7, 1, 1, 0, 0, 3, 0, 1606, 0, 1, 0, 0, 0, 5, 752, 16829, 388, 9, 1, 1, 0, 0, 5, 0, 193900, 0, 6, 0, 0, 0
Offset: 1

Views

Author

Jason Kimberley, Feb 22 2013

Keywords

Comments

In the n-th row 0 <= 2k <= n.

Examples

			01: 0;
02: 0, 0;
03: 0, 0;
04: 0, 0, 1;
05: 0, 0, 0;
06: 0, 0, 0, 1;
07: 0, 0, 0, 0;
08: 0, 0, 1, 2, 1;
09: 0, 0, 1, 0, 0;
10: 0, 0, 0, 5, 2, 1;
11: 0, 0, 1, 0, 2, 0;
12: 0, 0, 2, 21, 12, 1, 1;
13: 0, 0, 2, 0, 31, 0, 0;
14: 0, 0, 3, 103, 220, 7, 1, 1;
15: 0, 0, 3, 0, 1606, 0, 1, 0;
16: 0, 0, 5, 752, 16829, 388, 9, 1, 1;
17: 0, 0, 5, 0, 193900, 0, 6, 0, 0;
18: 0, 0, 7, 7385, 2452820, 406824, 267, 8, 1, 1;
19: 0, 0, 8, 0, 32670331, 0, 3727, 0, 0, 0;
20: 0, 0, 11, 91939, 456028487, 1125022326, 483012, 741, 13, 1, 1;
21: 0, 0, 12, 0, 6636066126, 0, 69823723, 0, 1, 0, 0;
22: 0, 0, 16, 1345933, 100135577863, 3813549359275, 14836130862, 2887493, ?, 14, 1;
		

Crossrefs

The sum of the n-th row of this sequence is A198314(n).
Not necessarily connected k-regular simple graphs girth exactly 4: A198314 (any k), this sequence (triangle); fixed k: A026797 (k=2), A185134 (k=3), A185144 (k=4).

Formula

E(n,k) = A186734(n,k) + A210704(n,k), noting the differing row lengths.
E(n,k) = A185304(n,k) - A185305(n,k), noting the differing row lengths.

A185044 Number of disconnected 4-regular simple graphs on n vertices with girth exactly 4.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 2, 2, 15, 35, 247, 1692, 17409, 197924, 2492824, 33117880, 461597957, 6709514218, 101153412903, 1597440868898
Offset: 0

Views

Author

Jason Kimberley, Nov 04 2011

Keywords

Comments

Only one component need have girth exactly four; the other components need only have girth at least four.
First differs from A185244 at n = 38, the smallest n where A185245 is nonzero.

Crossrefs

Disconnected 4-regular simple graphs with girth exactly g: A185043 (g=3), this sequence (g=4).
Disconnected k-regular simple graphs with girth exactly 4: A185034 (k=3), this sequence (k=4).

Formula

a(n) = A185244(n) - A185245(n).
a(n) = A185144(n) - A184944(n).

Extensions

a(31) corrected by the author, propagated from A185244, Jan 05 2013

A185140 Irregular triangle E(n,g) counting not necessarily connected 4-regular simple graphs on n vertices with girth exactly g.

Original entry on oeis.org

1, 1, 2, 5, 1, 16, 0, 58, 2, 264, 2, 1535, 12, 10755, 31, 87973, 220, 803973, 1606, 8020967, 16829, 86029760, 193900, 983431053, 2452820, 11913921910, 32670331, 1, 152352965278, 456028487, 2, 2050065073002, 6636066126, 8, 28466234288520, 100135577863, 131, 8020967, 16829
Offset: 5

Views

Author

Jason Kimberley, Jan 06 2013

Keywords

Comments

The first column is for girth at least 3. The column for girth g commences when n reaches A037233(g).

Examples

			05: 1;
06: 1;
07: 2;
08: 5, 1;
09: 16, 0;
10: 58, 2;
11: 264, 2;
12: 1535, 12;
13: 10755, 31;
14: 87973, 220;
15: 803973, 1606;
16: 8020967, 16829;
17: 86029760, 193900;
18: 983431053, 2452820;
19: 11913921910, 32670331, 1;
20: 152352965278, 456028487, 2;
21: 2050065073002, 6636066126, 8;
22: 28466234288520, 100135577863, 131;
		

Crossrefs

Initial columns of this triangle: A185143 (g=3), A185144 (g=4).

Formula

The n-th row is the sequence of differences of the n-th row of A185340:
E(n,g) = A185340(n,g) - A185340(n,g+1), once we have appended 0 to each row of A185340.
Hence the sum of the n-th row is A185340(n,3) = A033301(n).
Showing 1-8 of 8 results.