cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 22 results. Next

A008483 Number of partitions of n into parts >= 3.

Original entry on oeis.org

1, 0, 0, 1, 1, 1, 2, 2, 3, 4, 5, 6, 9, 10, 13, 17, 21, 25, 33, 39, 49, 60, 73, 88, 110, 130, 158, 191, 230, 273, 331, 391, 468, 556, 660, 779, 927, 1087, 1284, 1510, 1775, 2075, 2438, 2842, 3323, 3872, 4510
Offset: 0

Views

Author

T. Forbes (anthony.d.forbes(AT)googlemail.com)

Keywords

Comments

a(0) = 1 because the empty partition vacuously has each part >= 3. - Jason Kimberley, Jan 11 2011
Number of partitions where the largest part occurs at least three times. - Joerg Arndt, Apr 17 2011
By removing a single part of size 3, an A026796 partition of n becomes an A008483 partition of n - 3.
For n >= 3 the sequence counts the isomorphism classes of authentication codes AC(2,n,n) with perfect secrecy and with largest probability 0.5 that an interceptor could deceive with a substituted message. - E. Keith Lloyd (ekl(AT)soton.ac.uk).
For n >= 1, also the number of regular graphs of degree 2. - Mitch Harris, Jun 22 2005
(1 + 0*x + 0*x^2 + x^3 + x^4 + x^5 + 2*x^6 + ...) = (1 + x + 2*x^2 + 3*x^3 + 5*x^4 + ...) * 1 / (1 + x + 2*x^2 + 2*x^3 + 3*x^4 + 3*x^5 + 4*x^6 + 4*x^7 + ...). - Gary W. Adamson, Jun 30 2009
Because the triangle A051031 is symmetric, a(n) is also the number of (n-3)-regular graphs on n vertices. Since the disconnected (n-3)-regular graph with minimum order is 2K_{n-2}, then for n > 4 there are no disconnected (n-3)-regular graphs on n vertices. Therefore for n > 4, a(n) is also the number of connected (n-3)-regular graphs on n vertices. - Jason Kimberley, Oct 05 2009
Number of partitions of n+2 such that 2*(number of parts) is a part. - Clark Kimberling, Feb 27 2014
For n >= 1, a(n) is the number of (1,1)-separable partitions of n, as defined at A239482. For example, the (1,1)-separable partitions of 11 are [10,1], [7,1,2,1], [6,1,3,1], [5,1,4,1], [4,1,2,1,2,1], [3,1,3,1,2,1], so that a(11) = 6. - Clark Kimberling, Mar 21 2014
From Peter Bala, Dec 01 2024: (Start)
Let P(3, n) denote the set of partitions of n into parts k >= 3. Then A000041(n) = (1/2) * Sum_{parts k in all partitions in P(3, n+3)} phi(k), where phi(k) is the Euler totient function (see A000010). For example, with n = 5, there are 3 partitions of n + 3 = 8 into parts greater then 3, namely, 8, 5 + 3 and 4 + 4, and (1/2)*(phi(8) + phi(5) + phi(3) + 2*phi(4)) = 7 = A000041(5). (End)

Crossrefs

Essentially the same sequence as A026796 and A281356.
From Jason Kimberley, Nov 07 2009 and Jan 05 2011 and Feb 03 2011: (Start)
Not necessarily connected simple regular graphs: A005176 (any degree), A051031 (triangular array), specified degree k: A000012 (k=0), A059841 (k=1), this sequence (k=2), A005638 (k=3), A033301 (k=4), A165626 (k=5), A165627 (k=6), A165628 (k=7).
2-regular simple graphs: A179184 (connected), A165652 (disconnected), this sequence (not necessarily connected).
2-regular not necessarily connected graphs without multiple edges [partitions without 2 as a part]: this sequence (no loops allowed [without 1 as a part]), A027336 (loops allowed [parts may be 1]).
Not necessarily connected 2-regular graphs with girth at least g [partitions into parts >= g]: A026807 (triangle); chosen g: A000041 (g=1 -- multigraphs with loops allowed), A002865 (g=2 -- multigraphs with loops forbidden), this sequence (g=3), A008484 (g=4), A185325 (g=5), A185326 (g=6), A185327 (g=7), A185328 (g=8), A185329 (g=9).
Not necessarily connected 2-regular graphs with girth exactly g [partitions with smallest part g]: A026794 (triangle); chosen g: A002865 (g=2), A026796 (g=3), A026797 (g=4), A026798 (g=5), A026799 (g=6), A026800(g=7), A026801 (g=8), A026802 (g=9), A026803 (g=10), ... (End)
Cf. A008284.

Programs

  • Magma
    p := NumberOfPartitions; A008483 :=  func< n | n eq 0 select 1 else n le 2 select 0 else p(n) - p(n-1) - p(n-2) + p(n-3)>; // Jason Kimberley, Jan 11 2011
    
  • Maple
    series(1/product((1-x^i),i=3..50),x,51);
    ZL := [ B,{B=Set(Set(Z, card>=3))}, unlabeled ]: seq(combstruct[count](ZL, size=n), n=0..46); # Zerinvary Lajos, Mar 13 2007
    with(combstruct):ZL2:=[S,{S=Set(Cycle(Z,card>2))}, unlabeled]:seq(count(ZL2,size=n),n=0..46); # Zerinvary Lajos, Sep 24 2007
    with(combstruct):a:=proc(m) [A,{A=Set(Cycle(Z,card>m))},unlabeled]; end: A008483:=a(2):seq(count(A008483,size=n),n=0..46); # Zerinvary Lajos, Oct 02 2007
  • Mathematica
    f[1, 1] = 1; f[n_, k_] := f[n, k] = If[n < 0, 0, If[k > n, 0, If[k == n, 1, f[n, k + 1] + f[n - k, k]]]]; Table[ f[n, 3], {n, 49}] (* Robert G. Wilson v, Jan 31 2011 *)
    Rest[Table[Count[IntegerPartitions[n], p_ /; MemberQ[p, 2*Length[p]]], {n, 50}]]  (* Clark Kimberling, Feb 27 2014 *)
  • PARI
    a(n) = numbpart(n)-numbpart(n-1)-numbpart(n-2)+numbpart(n-3) \\ Charles R Greathouse IV, Jul 19 2011
    
  • Python
    from sympy import partition
    def A008483(n): return partition(n)-partition(n-1)-partition(n-2)+partition(n-3) # Chai Wah Wu, Jun 10 2025

Formula

a(n) = p(n) - p(n - 1) - p(n - 2) + p(n - 3) where p(n) is the number of unrestricted partitions of n into positive parts (A000041).
G.f.: Product_{m>=3} 1/(1-x^m).
G.f.: (Sum_{n>=0} x^(3*n)) / (Product_{k=1..n} (1 - x^k)). - Joerg Arndt, Apr 17 2011
a(n) = A121081(n+3) - A121659(n+3). - Reinhard Zumkeller, Aug 14 2006
Euler transformation of A179184. a(n) = A179184(n) + A165652(n). - Jason Kimberley, Jan 05 2011
a(n) ~ Pi^2 * exp(Pi*sqrt(2*n/3)) / (12*sqrt(3)*n^2). - Vaclav Kotesovec, Feb 26 2015
G.f.: exp(Sum_{k>=1} x^(3*k)/(k*(1 - x^k))). - Ilya Gutkovskiy, Aug 21 2018
a(n) = Sum_{j=0..floor(n/2)} A008284(n-2*j,j). - Gregory L. Simay, Apr 27 2023
G.f.: 1 + Sum_{n >= 1} x^(n+2)/Product_{k = 0..n-1} (1 - x^(k+3)). - Peter Bala, Dec 01 2024

A026794 Triangular array T read by rows: T(n,k) = number of partitions of n in which least part is k, 1<=k<=n.

Original entry on oeis.org

1, 1, 1, 2, 0, 1, 3, 1, 0, 1, 5, 1, 0, 0, 1, 7, 2, 1, 0, 0, 1, 11, 2, 1, 0, 0, 0, 1, 15, 4, 1, 1, 0, 0, 0, 1, 22, 4, 2, 1, 0, 0, 0, 0, 1, 30, 7, 2, 1, 1, 0, 0, 0, 0, 1, 42, 8, 3, 1, 1, 0, 0, 0, 0, 0, 1, 56, 12, 4, 2, 1, 1, 0, 0, 0, 0, 0, 1, 77, 14, 5, 2, 1, 1, 0, 0, 0, 0, 0, 0, 1, 101, 21, 6, 3, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1
Offset: 1

Views

Author

Keywords

Comments

At least one part is k and each part is at least k.
From Emeric Deutsch, Feb 19 2006: (Start)
Also number of partitions of n in which the largest part occurs exactly k times. Example: T(6,2)=2 because we have [3,3] and [2,2,1,1].
G.f. of column k is x^k/prod(j>=k, 1-x^j ) (k>=1).
Row sums yield the partition numbers (A000041).
T(n,1) = A000041(n-1) (the partition numbers).
T(n,2) = A002865(n-2) (n>=2).
T(n,3)=A026796(n). T(n,4) = A026797(n). T(n,5) = A026798(n). T(n,6) = A026799(n). T(n,7) = A026800(n). T(n,8) = A026801(n). T(n,9) = A026802(n). T(n,10) = A026803(n).
Sum(k*T(n,k),k=1..n) = A046746(n). (End)
Triangle inverse = A161363. - Gary W. Adamson, Jun 07 2009
T(n,g) is also the number of not necessarily connected 2-regular graphs with girth exactly g: the part i corresponds to the i-cycle; addition of integers corresponds to disconnected union of cycles. - Jason Kimberley, Feb 05 2012
From Bob Selcoe, Jul 24 2014 (Start):
Below is a process to generate equations for column k.
Let P be the partition numbers A000041(n-j) and let f(k) denote equations which generate column k.
To find f(k), start with f(1) = P(n-j), j=1. Thus T(n,1) = f(1) = P(n-1). This is the equation for column 1.
To find f(k) k>1, first sum the terms of f(k-1) replacing the value j with j+1, and then subtract the terms of f(k-1) replacing the value j with j+k. So to find f(2) (i.e., the equation for column 2, where k=2), start with f(1) = P(n-1); first replace j with j+1 (yielding P(n-2)), and then replace j with j+2 (yielding P(n-3)). Subtracting the second term from the first, we get: f(2) = P(n-2) - P(n-3).
To find f(3), start with f(2), replace j with j+1 (yielding P(n-3) - P(n-4)) and then replace j with j+3 (yielding P(n-5) - P(n-6)). Subtracting the second group of terms from the first, we get: f(3) = P(n-3) - P(n-4) - P(n-5) + P(n-6). This is the equation for column 3; also the equation for T(n,3) = A026796(n). So for example, T(13,3) = 5 because P(13-3) - P(13-4) - P(13-5) + P(13-6) = 42 - 30 - 22 + 15 = 5.
Continue as above to find f(k) k={4..inf.}. This will generate equations for T(n,4) = A026797(n), T(n,5) = A026798(n), T(n,6) = A026799(n), ad inf.
(End)

Examples

			T(12,3) = 4 because we have [9,3], [6,3,3], [5,4,3] and [3,3,3,3]. - Edited by _Bob Selcoe_, Sep 03 2016
Triangle starts:
    1;
    1,  1;
    2,  0, 1;
    3,  1, 0, 1;
    5,  1, 0, 0, 1;
    7,  2, 1, 0, 0, 1;
   11,  2, 1, 0, 0, 0, 1;
   15,  4, 1, 1, 0, 0, 0, 1;
   22,  4, 2, 1, 0, 0, 0, 0, 1;
   30,  7, 2, 1, 1, 0, 0, 0, 0, 1;
   42,  8, 3, 1, 1, 0, 0, 0, 0, 0, 1;
   56, 12, 4, 2, 1, 1, 0, 0, 0, 0, 0, 1;
   77, 14, 5, 2, 1, 1, 0, 0, 0, 0, 0, 0, 1;
  101, 21, 6, 3, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1;
  135, 24, 9, 3, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1;
  ...
		

Crossrefs

Row sums give A000041.
Not necessarily connected 2-regular graphs with girth at least g [partitions into parts >= g]: A026807 (triangle); chosen g: A000041 (g=1 -- multigraphs with loops allowed), A002865 (g=2 -- multigraphs with loops forbidden), A008483 (g=3), A008484 (g=4), A185325(g=5), A185326 (g=6), A185327 (g=7), A185328 (g=8), A185329 (g=9). For g >= 3, girth at least g implies no loops or parallel edges. - Jason Kimberley, Feb 05 2012
Not necessarily connected 2-regular graphs with girth exactly g [partitions with smallest part g]: this sequence (triangle); chosen g: A002865 (g=2), A026796 (g=3), A026797 (g=4), A026798 (g=5), A026799 (g=6), A026800(g=7), A026801 (g=8), A026802 (g=9), A026803 (g=10). - Jason Kimberley, Feb 05 2012

Programs

  • Maple
    g:=sum(t^i*x^i/product(1-x^j,j=i..30),i=1..30): gser:=simplify(series(g,x=0,19)): for n from 1 to 15 do P[n]:=coeff(gser,x^n) od: for n from 1 to 15 do seq(coeff(P[n],t^j),j=1..n) od; # Emeric Deutsch, Feb 19 2006
    nmax:=13; for n from 1 to nmax do T(n,n):=1 od: for n from 1 to nmax do for k from floor(n/2)+1 to n-1 do T(n,k):=0 od: od: for n from 2 to nmax do for k from 1 to floor(n/2) do T(n,k):=sum(T(n-k,i),i=k..n-k) od: od: seq(seq(T(n,k),k=1..n), n=1..nmax); # Johannes W. Meijer, Jun 21 2010
    nmax:=13; with(combinat): for n from 1 to nmax do for k from n+1 to nmax do T(n,k):=0 od: od: for n from 1 to nmax do T(n,1):=numbpart(n-1) od: for n from 1 to nmax do T(n,n):=1 od: for n from 2 to nmax do for k from 2 to n-1 do T(n,k) := T(n-1,k-1) - T(n-k,k-1) od: od: seq(seq(T(n,k),k=1..n), n=1..nmax); # Johannes W. Meijer, Jun 21 2010
    #
    p:= (f, g)-> zip((x,y)-> x+y, f, g, 0):
    b:= proc(n, i) option remember; local h;
          h:= `if`(n=i and i>0, [0$(i-1), 1], []);
          `if`(i<1, h, p(p(h, b(n, i-1)), `if`(n b(n, n)[]:
    seq(T(n), n=1..14); # Alois P. Heinz, Mar 28 2012
  • Mathematica
    t[n_, k_] /; k<1 || k>n = 0; t[n_, n_] = 1; t[n_, k_] := t[n, k] = Sum[t[n-k, i], {i, k, n-k}]; Flatten[ Table[t[n, k], {n, 1, 14}, {k, 1, n}]] (* Jean-François Alcover, May 11 2012, after PARI *)
  • PARI
    {T(n, k) = if( k<1 || k>n, 0, if( n==k, 1, sum(i=k, n-k, T(n-k, i))))} \\ Michael Somos, Feb 06 2003
    
  • PARI
    A026794(n,k)=#select(p->p[1]==k,partitions(n,[k,n])) \\ For illustration: Creates the list of all partitions of n with smallest part equal to k. - M. F. Hasler, Jun 14 2018

Formula

T(n, k) = sum{T(n-k, i), k<=i<=n-k} for k=1, 2, ..., m, T(n, k)=0 for k=m+1, ..., n-1, where m=floor(n/2); T(n, n)=1 for n >= 1.
G.f.: G(t,x)=sum(t^i*x^i/product(1-x^j, j=i..infinity), i=1..infinity). - Emeric Deutsch, Feb 19 2006
G.f.: Sum_{k>=1} tx^k/(1-tx^k)/product(1-x^j,j=1..k-1). - Emeric Deutsch, Mar 13 2006
T(n,k) = T(n-1,k-1) - T(n-k,k-1) for n>=2 and 2<=k<=(n-1) with T(n,1) = A000041(n-1), T(n,n) = 1 for n>=1 and T(n,k) = 0 for k>n. - Johannes W. Meijer, Jun 21 2010
T(k,k) = 1 and T(n,1) = row sum (n-1); thus Meijer's 2010 formula generates the triangle without a priori reference to A000041 (the partition sequence). - Bob Selcoe, Sep 03 2016

Extensions

More terms from Emeric Deutsch, Feb 19 2006

A008484 Number of partitions of n into parts >= 4.

Original entry on oeis.org

1, 0, 0, 0, 1, 1, 1, 1, 2, 2, 3, 3, 5, 5, 7, 8, 11, 12, 16, 18, 24, 27, 34, 39, 50, 57, 70, 81, 100, 115, 140, 161, 195, 225, 269, 311, 371, 427, 505, 583, 688, 791, 928, 1067, 1248, 1434, 1668, 1914, 2223, 2546, 2945, 3370, 3889, 4443, 5113, 5834, 6698
Offset: 0

Views

Author

T. Forbes (anthony.d.forbes(AT)googlemail.com)

Keywords

Comments

a(n) is also the number of not necessarily connected 2-regular graphs on n-vertices with girth at least 4 (all such graphs are simple). The integer i corresponds to the i-cycle; addition of integers corresponds to disconnected union of cycles. - Jason Kimberley, Jan 2011 and Feb 2012
By removing a single part of size 4, an A026797 partition of n becomes an A008484 partition of n - 4. Hence this sequence is essentially the same as A026797. - Jason Kimberley, Feb 2012
Number of partitions of n+3 such that 3*(number of parts) is a part. - Clark Kimberling, Feb 27 2014
Let c(n) be the number of partitions of n such that both (number of parts) and 2*(number of parts) are parts; then c(n) = a(n-6) for n >= 6 and c(n) = 0 for n < 6. - Clark Kimberling, Mar 01 2014
a(n) is also the number of partitions of n for which three times the number of ones is twice the number of parts (conjectured). - George Beck, Aug 19 2017
Proof: Above definition is equivalent to 2 out of 3 parts being equal to 1. Arrange in triples 1, 1, >= 2, etc. Sum of each triple corresponds to sequence definition. - Martin Fuller, Aug 21 2023

Crossrefs

2-regular graphs with girth at least 4: A185114 (connected), A185224 (disconnected), this sequence (not necessarily connected).
Not necessarily connected 2-regular graphs with girth at least g [partitions into parts >= g]: A026807 (triangle); chosen g: A000041 (g=1 -- multigraphs with loops allowed), A002865 (g=2 -- multigraphs with loops forbidden), A008483 (g=3), this sequence (g=4), A185325(g=5), A185326 (g=6), A185327 (g=7), A185328 (g=8), A185329 (g=9).
Not necessarily connected 2-regular graphs with girth exactly g [partitions with smallest part g]: A026794 (triangle); chosen g: A002865 (g=2), A026796 (g=3), A026797 (g=4), A026798 (g=5), A026799 (g=6), A026800(g=7), A026801 (g=8), A026802 (g=9), A026803 (g=10).
Not necessarily connected k-regular simple graphs with girth at least 4: A185314 (any k), A185304 (triangle); specified degree k: this sequence (k=2), A185334 (k=3), A185344 (k=4), A185354 (k=5), A185364 (k=6).

Programs

  • Magma
    a:= func< n | NumberOfPartitions(n)-NumberOfPartitions(n-1)-NumberOfPartitions(n-2)+ NumberOfPartitions(n-4)+NumberOfPartitions(n-5)- NumberOfPartitions(n-6) >; [1,0,0,0,1,1,1] cat [ a(n) : n in [7..60]]; // Vincenzo Librandi, Aug 20 2017
    
  • Magma
    R:=PowerSeriesRing(Integers(), 60); Coefficients(R!( 1/(&*[1-x^(m+4): m in [0..70]]) )); // G. C. Greubel, Nov 03 2019
    
  • Maple
    series(1/product((1-x^i),i=4..65),x,60); # end of program
    ZL := [ B,{B=Set(Set(Z, card>=4))}, unlabeled ]: seq(combstruct[count](ZL, size=n), n=0..60); # Zerinvary Lajos, Mar 13 2007
  • Mathematica
    f[1, 1]=1; f[n_, k_]:= f[n, k] = If[n<0, 0, If[k>n, 0, If[k==n, 1, f[n, k +1] + f[n-k, k]]]]; Table[f[n, 4], {n, 60}] (* end of program *)
    Drop[Table[Count[IntegerPartitions[n], p_ /; MemberQ[p, 3*Length[p]]], {n, 60}],2]  (* Clark Kimberling, Feb 27 2014 *)
    Table[Count[IntegerPartitions[n],
      p_ /; 3 Count[p, 1] == 2 Length[p]], {n, 0, 60}] (* George Beck Aug 19 2017 *)
    CoefficientList[Series[1/QPochhammer[x^4, x], {x,0,60}], x] (* G. C. Greubel, Nov 03 2019 *)
  • PARI
    my(x='x+O('x^60)); Vec(1/prod(m=0,70, 1-x^(m+4))) \\ G. C. Greubel, Nov 03 2019
    
  • Sage
    def A008484_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( 1/product((1-x^(m+4)) for m in (0..70)) ).list()
    A008484_list(60) # G. C. Greubel, Nov 03 2019

Formula

G.f.: 1 / Product_{m>=4} (1 - x^m).
Euler transformation of A185114. - Jason Kimberley, Jan 30 2011
Given by p(n) - p(n-1) - p(n-2) + p(n-4) + p(n-5) - p(n-6) where p(n) = A000041(n). Generally, 1/Product_{i>=K} (1 - x^i) is given by p({A}), where {A} is defined over the coefficients of Product_{i=1..K-1} (1 - x^i). In this case, K=4, so (1-x)(1-x^2)(1-x^3) = 1 - x - x^2 + x^4 + x^5 - x^6, defining {A} as above. G.f.: 1 + Sum_{i>=1} (x^4i)/Product_{j=1..i}(1 - x^j). - Jon Perry, Jul 04 2004
a(n) ~ exp(Pi*sqrt(2*n/3)) * Pi^3 / (12*sqrt(2)*n^(5/2)). - Vaclav Kotesovec, Jun 02 2018
G.f.: exp(Sum_{k>=1} x^(4*k)/(k*(1 - x^k))). - Ilya Gutkovskiy, Aug 21 2018
G.f.: 1 + Sum_{n >= 1} x^(n+3)/Product_{k = 0..n-1} (1 - x^(k+4)). - Peter Bala, Dec 01 2024

A026796 Number of partitions of n in which the least part is 3.

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 1, 1, 1, 2, 2, 3, 4, 5, 6, 9, 10, 13, 17, 21, 25, 33, 39, 49, 60, 73, 88, 110, 130, 158, 191, 230, 273, 331, 391, 468, 556, 660, 779, 927, 1087, 1284, 1510, 1775, 2075, 2438, 2842, 3323, 3872, 4510, 5237, 6095, 7056, 8182, 9465, 10945, 12625
Offset: 0

Views

Author

Keywords

Comments

Let b(k) be the number of partitions of k for which twice the number of ones is the number of parts, k = 0, 1, 2, ... . Then a(n+4) = b(n), n = 0, 1, 2, ... (conjectured). - George Beck, Aug 19 2017

Crossrefs

Essentially the same sequence as A008483.
Not necessarily connected 2-regular graphs with girth at least g [partitions into parts >= g]: A026807 (triangle); chosen g: A000041 (g=1 -- multigraphs with loops allowed), A002865 (g=2 -- multigraphs with loops forbidden), A008483 (g=3), A008484 (g=4), A185325(g=5), A185326 (g=6), A185327 (g=7), A185328 (g=8), A185329 (g=9).
Not necessarily connected 2-regular graphs with girth exactly g [partitions with smallest part g]: A026794 (triangle); chosen g: A002865 (g=2 -- multigraphs with at least one pair of parallel edges, but loops forbidden), this sequence (g=3), A026797 (g=4), A026798 (g=5), A026799 (g=6), A026800 (g=7), A026801 (g=8), A026802 (g=9), A026803 (g=10).
Not necessarily connected k-regular simple graphs girth exactly 3: A198313 (any k), A185643 (triangle); fixed k: this sequence (k=2), A185133 (k=3), A185143 (k=4), A185153 (k=5), A185163 (k=6).

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 60); [0,0,0] cat Coefficients(R!( x^3/(&*[1-x^(m+3): m in [0..70]]) )); // G. C. Greubel, Nov 02 2019
    
  • Maple
    seq(coeff(series(x^3/mul(1-x^(m+3), m=0..65), x, n+1), x, n), n = 0 .. 60); # G. C. Greubel, Nov 02 2019
  • Mathematica
    Table[Count[IntegerPartitions[n], p_ /; Min@p==3], {n, 0, 60}] (* George Beck Aug 19 2017 *)
    CoefficientList[Series[x^3/QPochhammer[x^3, x], {x,0,60}], x] (* G. C. Greubel, Nov 02 2019 *)
  • PARI
    a(n) = numbpart(n-3) - numbpart(n-4) - numbpart(n-5) + numbpart(n-6); \\ Michel Marcus, Aug 20 2014
    
  • PARI
    x='x+O('x^66); Vecrev(Pol(x^3*(1-x)*(1-x^2)/eta(x))) \\ Joerg Arndt, Aug 22 2014
    
  • Sage
    def A026796_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( x^3/product((1-x^(m+3)) for m in (0..65)) ).list()
    A026796_list(60) # G. C. Greubel, Nov 02 2019

Formula

G.f.: x^3 / Product_{m>=3} (1 - x^m).
a(n) = p(n-3) - p(n-4) - p(n-5) + p(n-6), where p(n) = A000041(n). - Bob Selcoe, Aug 07 2014
a(n) ~ exp(Pi*sqrt(2*n/3)) * Pi^2 / (12*sqrt(3)*n^2). - Vaclav Kotesovec, Jun 02 2018
G.f.: Sum_{k>=1} x^(3*k) / Product_{j=1..k-1} (1 - x^j). - Ilya Gutkovskiy, Nov 25 2020

Extensions

More terms from Michel Marcus, Aug 20 2014
a(0) = 0 prepended by Joerg Arndt, Aug 22 2014

A026807 Triangular array T read by rows: T(n,k) = number of partitions of n in which every part is >=k, for k=1,2,...,n.

Original entry on oeis.org

1, 2, 1, 3, 1, 1, 5, 2, 1, 1, 7, 2, 1, 1, 1, 11, 4, 2, 1, 1, 1, 15, 4, 2, 1, 1, 1, 1, 22, 7, 3, 2, 1, 1, 1, 1, 30, 8, 4, 2, 1, 1, 1, 1, 1, 42, 12, 5, 3, 2, 1, 1, 1, 1, 1, 56, 14, 6, 3, 2, 1, 1, 1, 1, 1, 1, 77, 21, 9, 5, 3, 2, 1, 1, 1, 1, 1, 1, 101, 24, 10, 5, 3, 2, 1, 1, 1, 1, 1, 1, 1, 135, 34, 13
Offset: 1

Views

Author

Keywords

Comments

T(n,g) is also the number of not necessarily connected 2-regular graphs with girth at least g: the part i corresponds to the i-cycle; addition of integers corresponds to disconnected union of cycles. - Jason Kimberley, Feb 05 2012

Examples

			Sum_{k>=1} y^k*(-1+1/Product_{i>=0} (1-x^(k+i))) = y*x+(2*y+y^2)*x^2+(3*y+y^2+y^3)*x^3+(5*y+2*y^2+y^3+y^4)*x^4+(7*y+2*y^2+y^3+y^4+y^5)*x^5+...
Triangle starts:  - _Jason Kimberley_, Feb 05 2012
1;
2, 1;
3, 1, 1;
5, 2, 1, 1;
7, 2, 1, 1, 1;
11, 4, 2, 1, 1, 1;
15, 4, 2, 1, 1, 1, 1;
22, 7, 3, 2, 1, 1, 1, 1;
30, 8, 4, 2, 1, 1, 1, 1, 1;
42, 12, 5, 3, 2, 1, 1, 1, 1, 1;
56, 14, 6, 3, 2, 1, 1, 1, 1, 1, 1;
77, 21, 9, 5, 3, 2, 1, 1, 1, 1, 1, 1;
101, 24, 10, 5, 3, 2, 1, 1, 1, 1, 1, 1, 1;
From _Tilman Piesk_, Feb 20 2016: (Start)
n = 12, k = 4, t = A000217(k-1) = 6
vp = A000041(n..n-t) = A000041(12..6) = (77, 56, 42, 30, 22, 15, 11)
vc = A231599(k-1, 0..t) = A231599(3, 0..6) = (1,-1,-1, 0, 1, 1,-1)
T(12, 4) = vp * transpose(vc) = 77-56-42+22+15-11 = 5
(End)
		

Crossrefs

Row sums give A046746.
Cf. A026835.
Cf. A026794.
Cf. A231599.
Not necessarily connected 2-regular graphs with girth at least g [partitions into parts >= g]: this sequence (triangle); columns of this sequence: A000041 (g=1 -- multigraphs with loops allowed), A002865 (g=2 -- multigraphs with loops forbidden), A008483 (g=3), A008484 (g=4), A185325(g=5), A185326 (g=6), A185327 (g=7), A185328 (g=8), A185329 (g=9). For g >= 3, girth at least g implies no loops or parallel edges. - Jason Kimberley, Feb 05 2012
Not necessarily connected 2-regular simple graphs with girth exactly g [partitions with smallest part g]: A026794 (triangle); chosen g: A002865 (g=2), A026796 (g=3), A026797 (g=4), A026798 (g=5), A026799 (g=6), A026800(g=7), A026801 (g=8), A026802 (g=9), A026803 (g=10). - Jason Kimberley, Feb 05 2012
Cf. A002260.

Programs

  • Haskell
    import Data.List (tails)
    a026807 n k = a026807_tabl !! (n-1) !! (k-1)
    a026807_row n = a026807_tabl !! (n-1)
    a026807_tabl = map
       (\row -> map (p $ last row) $ init $ tails row) a002260_tabl
       where p 0  _ = 1
             p _ [] = 0
             p m ks'@(k:ks) = if m < k then 0 else p (m - k) ks' + p m ks
    -- Reinhard Zumkeller, Dec 01 2012
    
  • Maple
    T:= proc(n, k) option remember;
          `if`(k<1 or k>n, 0, `if`(n=k, 1, T(n, k+1) +T(n-k, k)))
        end:
    seq(seq(T(n, k), k=1..n), n=1..14); # Alois P. Heinz, Mar 28 2012
  • Mathematica
    T[n_, k_] := T[n, k] = If[ k<1 || k>n, 0, If[n == k, 1, T[n, k+1] + T[n-k, k]]]; Table [Table[ T[n, k], {k, 1, n}], {n, 1, 14}] // Flatten (* Jean-François Alcover, Jan 28 2015, after Alois P. Heinz *)
  • Python
    from see_there import a231599_row  # A231599
    from sympy.ntheory import npartitions  # A000041
    def a026807(n, k):
        if k > n:
            return 0
        elif k > n/2:
            return 1
        else:
            vc = a231599_row(k-1)
            t = len(vc)
            vp_range = range(n-t, n+1)
            vp_range = vp_range[::-1]  # reverse
            r = 0
            for i in range(0, t):
                r += vc[i] * npartitions(vp_range[i])
            return r
    # Tilman Piesk, Feb 21 2016

Formula

T(n,1)=A000041(n), T(n,2)=A002865(n) for n>1, T(n,3)=A008483(n) for n>2, T(n,4)=A008484(n) for n>3.
G.f.: Sum_{k>=1} y^k*(-1+1/Product_{i>=0} (1-x^(k+i))). - Vladeta Jovovic, Jun 22 2003
T(n, k) = T(n, k+1) + T(n-k, k), T(n, k) = 1 if n/2 < k <= n. - Franklin T. Adams-Watters, Jan 24 2005; Tilman Piesk, Feb 20 2016
T(n, k) = A000041(n..n-t) * transpose(A231599(k-1, 0..t)) with t = A000217(k-1). - Tilman Piesk, Feb 20 2016
Equals A026794 * A000012 as infinite lower triangular matrices. - Gary W. Adamson, Jan 31 2008

A185325 Number of partitions of n into parts >= 5.

Original entry on oeis.org

1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 3, 3, 4, 5, 6, 7, 9, 10, 13, 15, 18, 21, 26, 30, 36, 42, 50, 58, 70, 80, 95, 110, 129, 150, 176, 202, 236, 272, 317, 364, 423, 484, 560, 643, 740, 847, 975, 1112, 1277, 1456, 1666, 1897, 2168, 2464, 2809, 3189, 3627, 4112, 4673
Offset: 0

Views

Author

Jason Kimberley, Nov 11 2011

Keywords

Comments

a(n) is also the number of not necessarily connected 2-regular graphs on n-vertices with girth at least 5 (all such graphs are simple). The integer i corresponds to the i-cycle; addition of integers corresponds to disconnected union of cycles.
By removing a single part of size 5, an A026798 partition of n becomes an A185325 partition of n - 5. Hence this sequence is essentially the same as A026798.
a(n) = number of partitions of n+4 such that 4*(number of parts) is a part. - Clark Kimberling, Feb 27 2014

Crossrefs

2-regular simple graphs with girth at least 5: A185115 (connected), A185225 (disconnected), this sequence (not necessarily connected).
Not necessarily connected 2-regular graphs with girth at least g [partitions into parts >= g]: A026807 (triangle); chosen g: A000041 (g=1 -- multigraphs with loops allowed), A002865 (g=2 -- multigraphs with loops forbidden), A008483 (g=3), A008484 (g=4), this sequence (g=5), A185326 (g=6), A185327 (g=7), A185328 (g=8), A185329 (g=9).
Not necessarily connected 2-regular graphs with girth exactly g [partitions with smallest part g]: A026794 (triangle); chosen g: A002865 (g=2), A026796 (g=3), A026797 (g=4), A026798 (g=5), A026799 (g=6), A026800(g=7), A026801 (g=8), A026802 (g=9), A026803 (g=10).
Not necessarily connected k-regular simple graphs with girth at least 5: A185315 (any k), A185305 (triangle); specified degree k: this sequence (k=2), A185335 (k=3).

Programs

  • Magma
    p :=  func< n | n lt 0 select 0 else NumberOfPartitions(n) >;
    A185325 := func;
    [A185325(n):n in[0..60]];
    
  • Magma
    R:=PowerSeriesRing(Integers(), 70); Coefficients(R!( 1/(&*[1-x^(m+5): m in [0..80]]) )); // G. C. Greubel, Nov 03 2019
    
  • Maple
    seq(coeff(series(1/mul(1-x^(m+5), m = 0..80), x, n+1), x, n), n = 0..70); # G. C. Greubel, Nov 03 2019
  • Mathematica
    Drop[Table[Count[IntegerPartitions[n], p_ /; MemberQ[p, 4*Length[p]]], {n, 40}], 3]  (* Clark Kimberling, Feb 27 2014 *)
    CoefficientList[Series[1/QPochhammer[x^5, x], {x, 0, 70}], x] (* G. C. Greubel, Nov 03 2019 *)
  • PARI
    my(x='x+O('x^70)); Vec(1/prod(m=0,80, 1-x^(m+5))) \\ G. C. Greubel, Nov 03 2019
    
  • Sage
    def A185325_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( 1/product((1-x^(m+5)) for m in (0..80)) ).list()
    A185325_list(70) # G. C. Greubel, Nov 03 2019

Formula

G.f.: Product_{m>=5} 1/(1-x^m).
Given by p(n) -p(n-1) -p(n-2) +2*p(n-5) -p(n-8) -p(n-9) +p(n-10), where p(n) = A000041(n). - Shanzhen Gao, Oct 28 2010 [sign of 10 corrected from + to -, and moved from A026798 to this sequence by Jason Kimberley].
This sequence is the Euler transformation of A185115.
a(n) ~ exp(Pi*sqrt(2*n/3)) * Pi^4 / (6*sqrt(3)*n^3). - Vaclav Kotesovec, Jun 02 2018
G.f.: exp(Sum_{k>=1} x^(5*k)/(k*(1 - x^k))). - Ilya Gutkovskiy, Aug 21 2018
G.f.: 1 + Sum_{n >= 1} x^(n+4)/Product_{k = 0..n-1} (1 - x^(k+5)). - Peter Bala, Dec 01 2024

A185326 Number of partitions of n into parts >= 6.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 2, 3, 3, 4, 4, 6, 6, 8, 9, 11, 12, 16, 17, 21, 24, 29, 32, 40, 44, 53, 60, 71, 80, 96, 107, 126, 143, 167, 188, 221, 248, 288, 326, 376, 424, 491, 552, 634, 716, 819, 922, 1056, 1187, 1353, 1523, 1730, 1944, 2209, 2478, 2806, 3151
Offset: 0

Views

Author

Jason Kimberley, Jan 30 2012

Keywords

Comments

a(n) is also the number of not necessarily connected 2-regular graphs on n-vertices with girth at least 6 (all such graphs are simple). The integer i corresponds to the i-cycle; addition of integers corresponds to disconnected union of cycles.
By removing a single part of size 6, an A026799 partition of n becomes an A185326 partition of n - 6. Hence this sequence is essentially the same as A026799.

Crossrefs

2-regular simple graphs with girth at least 6: A185116 (connected), A185226 (disconnected), this sequence (not necessarily connected).
Not necessarily connected 2-regular graphs with girth at least g [partitions into parts >= g]: A026807 (triangle); chosen g: A000041 (g=1 -- multigraphs with loops allowed), A002865 (g=2 -- multigraphs with loops forbidden), A008483 (g=3), A008484 (g=4), A185325(g=5), this sequence (g=6), A185327 (g=7), A185328 (g=8), A185329 (g=9).
Not necessarily connected 2-regular graphs with girth exactly g [partitions with smallest part g]: A026794 (triangle); chosen g: A002865 (g=2), A026796 (g=3), A026797 (g=4), A026798 (g=5), A026799 (g=6), A026800(g=7), A026801 (g=8), A026802 (g=9), A026803 (g=10).

Programs

  • Magma
    A185326 := func;
    
  • Magma
    R:=PowerSeriesRing(Integers(), 70); Coefficients(R!( 1/(&*[1-x^(m+6): m in [0..80]]) )); // G. C. Greubel, Nov 03 2019
    
  • Maple
    seq(coeff(series(1/mul(1-x^(m+6), m = 0..80), x, n+1), x, n), n = 0..70); # G. C. Greubel, Nov 03 2019
  • Mathematica
    CoefficientList[Series[1/QPochhammer[x^6, x], {x, 0, 75}], x] (* G. C. Greubel, Nov 03 2019 *)
  • PARI
    my(x='x+O('x^70)); Vec(1/prod(m=0,80, 1-x^(m+6))) \\ G. C. Greubel, Nov 03 2019
    
  • Sage
    def A185326_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( 1/product((1-x^(m+6)) for m in (0..80)) ).list()
    A185326_list(70) # G. C. Greubel, Nov 03 2019

Formula

G.f.: Product_{m>=6} 1/(1-x^m).
a(n) = p(n) - p(n-1) - p(n-2) + p(n-5) + p(n-6) + p(n-7) - p(n-8) - p(n-9) - p(n-10) + p(n-13) + p(n-14) - p(n-15) where p(n) = A000041(n).
a(n) = A185226(n) + A185116(n).
This sequence is the Euler transformation of A185116.
a(n) ~ exp(Pi*sqrt(2*n/3)) * 5*Pi^5 / (18*sqrt(2)*n^(7/2)). - Vaclav Kotesovec, Jun 02 2018
G.f.: Sum_{k>=0} x^(6*k) / Product_{j=1..k} (1 - x^j). - Ilya Gutkovskiy, Nov 28 2020
G.f.: 1 + Sum_{n >= 1} x^(n+5)/Product_{k = 0..n-1} (1 - x^(k+6)). - Peter Bala, Dec 01 2024

A026798 Number of partitions of n in which the least part is 5.

Original entry on oeis.org

1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 3, 3, 4, 5, 6, 7, 9, 10, 13, 15, 18, 21, 26, 30, 36, 42, 50, 58, 70, 80, 95, 110, 129, 150, 176, 202, 236, 272, 317, 364, 423, 484, 560, 643, 740, 847, 975, 1112, 1277, 1456, 1666, 1897, 2168
Offset: 0

Views

Author

Keywords

Comments

Also the number of not necessarily connected 2-regular simple graphs with girth exactly 5. - Jason Kimberley, Nov 11 2011
Such partitions of n+5 correspond to A185325 partitions (parts >= 5) of n by removing a single part of size 5. - Jason Kimberley, Nov 11 2011

Crossrefs

Essentially the same as A185325.
Not necessarily connected 2-regular graphs with girth at least g [partitions into parts >= g]: A026807 (triangle); chosen g: A000041 (g=1 -- multigraphs with loops allowed), A002865 (g=2 -- multigraphs with loops forbidden), A008483 (g=3), A008484 (g=4), A185325(g=5), A185326 (g=6), A185327 (g=7), A185328 (g=8), A185329 (g=9).
Not necessarily connected 2-regular graphs with girth exactly g [partitions with smallest part g]: A026794 (triangle); chosen g: A002865 (g=2 -- multigraphs with at least one pair of parallel edges, but loops forbidden), A026796 (g=3), A026797 (g=4), this sequence (g=5), A026799 (g=6), A026800 (g=7), A026801 (g=8), A026802 (g=9), A026803 (g=10). - Jason Kimberley, Nov 11 2011

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 60); [1,0,0,0,0] cat Coefficients(R!( x^5/(&*[1-x^(m+5): m in [0..70]]) )); // G. C. Greubel, Nov 03 2019
    
  • Maple
    ZL := [ B,{B=Set(Set(Z, card>=5))}, unlabeled ]: 1,0,0,0,0, seq(combstruct[count](ZL, size=n), n=0..54); # Zerinvary Lajos, Mar 13 2007
    1, seq(coeff(series(x^5/mul(1-x^(m+5), m=0..70), x, n+1), x, n), n = 0..65); # G. C. Greubel, Nov 03 2019
  • Mathematica
    f[1, 1] = 1; f[n_, k_] := f[n, k] = If[n < 0, 0, If[k > n, 0, If[k == n, 1, f[n, k + 1] + f[n - k, k]]]]; Join[{1, 0, 0, 0, 0, 1}, Table[ f[n, 5], {n, 50}]] (* Robert G. Wilson v *)
    Join[{1}, Drop[CoefficientList[Series[x^5/QPochhammer[x^5, x], {x,0,60}], x], 1]] (* G. C. Greubel, Nov 03 2019 *)
  • PARI
    my(x='x+O('x^60)); concat([1,0,0,0,0], Vec(x^5/prod(m=0,70, 1-x^(m+5)))) \\ G. C. Greubel, Nov 03 2019
    
  • Sage
    def A026798_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( x^5/product((1-x^(m+5)) for m in (0..70)) ).list()
    a=A026798_list(65); [1]+a[1:] # G. C. Greubel, Nov 03 2019

Formula

G.f.: x^5 * Product_{m>=5} 1/(1-x^m).
a(n+5) is given by p(n) - p(n-1) - p(n-2) + 2p(n-5) - p(n-8) - p(n-9) + p(n-10) where p(n) = A000041(n). - Shanzhen Gao, Oct 28 2010 [sign of 10 and offset of formula corrected by Jason Kimberley, Nov 11 2011]
a(n) ~ exp(Pi*sqrt(2*n/3)) * Pi^4 / (6*sqrt(3)*n^3). - Vaclav Kotesovec, Jun 02 2018

A185329 Number of partitions of n with parts >= 9.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 7, 8, 9, 11, 12, 14, 16, 18, 20, 24, 26, 30, 34, 39, 43, 50, 55, 63, 71, 80, 89, 102, 113, 128, 143, 161, 179, 203, 225, 253, 282, 316, 351, 395, 437, 489, 544, 607, 673, 752, 832, 927, 1028, 1143
Offset: 0

Views

Author

Jason Kimberley, Feb 01 2012

Keywords

Comments

a(n) is also the number of not necessarily connected 2-regular graphs on n-vertices with girth at least 9 (all such graphs are simple). The integer i corresponds to the i-cycle; addition of integers corresponds to disconnected union of cycles.
By removing a single part of size 9, an A026802 partition of n becomes an A185329 partition of n - 9. Hence this sequence is essentially the same as A026802.
In general, if g>=1 and g.f. = Product_{m>=g} 1/(1-x^m), then a(n,g) ~ Pi^(g-1) * (g-1)! * exp(Pi*sqrt(2*n/3)) / (2^((g+3)/2) * 3^(g/2) * n^((g+1)/2)) ~ p(n) * Pi^(g-1) * (g-1)! / (6*n)^((g-1)/2), where p(n) is the partition function A000041(n). - Vaclav Kotesovec, Jun 02 2018

Crossrefs

Not necessarily connected 2-regular graphs with girth at least g [partitions into parts >= g]: A026807 (triangle); chosen g: A000041 (g=1 -- multigraphs with loops allowed), A002865 (g=2 -- multigraphs with loops forbidden), A008483 (g=3), A008484 (g=4), A185325(g=5), A185326 (g=6), A185327 (g=7), A185328 (g=8), this sequence (g=9).
Not necessarily connected 2-regular graphs with girth exactly g [partitions with smallest part g]: A026794 (triangle); chosen g: A002865 (g=2), A026796 (g=3), A026797 (g=4), A026798 (g=5), A026799 (g=6), A026800(g=7), A026801 (g=8), A026802 (g=9), A026803 (g=10).

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 70); Coefficients(R!( 1/(&*[1-x^(m+9): m in [0..80]]) )); // G. C. Greubel, Nov 03 2019
    
  • Maple
    seq(coeff(series(1/mul(1-x^(m+9), m = 0..80), x, n+1), x, n), n = 0..70); # G. C. Greubel, Nov 03 2019
  • Mathematica
    CoefficientList[Series[x^9/QPochhammer[x^9, x], {x,0,75}], x] (* G. C. Greubel, Nov 03 2019 *)
  • PARI
    my(x='x+O('x^70)); Vec(1/prod(m=0,80, 1-x^(m+9))) \\ G. C. Greubel, Nov 03 2019
    
  • Sage
    def A185329_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( 1/product((1-x^(m+9)) for m in (0..80)) ).list()
    A185329_list(70) # G. C. Greubel, Nov 03 2019

Formula

G.f.: Product_{m>=9} 1/(1-x^m).
a(n) = p(n) - p(n-1) - p(n-2) + p(n-5) + p(n-7) + p(n-9) - p(n-11) - 2*p(n-12) - p(n-13) - p(n-15) + p(n-16) + p(n-17) + 2*p(n-18) + p(n-19) + p(n-20) - p(n-21) - p(n-23) - 2*p(n-24) - p(n-25) + p(n-27) + p(n-29) + p(n-31) - p(n-34) - p(n-35) + p(n-36) where p(n)=A000041(n). - Shanzhen Gao
This sequence is the Euler transformation of A185119.
a(n) ~ exp(Pi*sqrt(2*n/3)) * 70*Pi^8 / (9*sqrt(3)*n^5). - Vaclav Kotesovec, Jun 02 2018
G.f.: Sum_{k>=0} x^(9*k) / Product_{j=1..k} (1 - x^j). - Ilya Gutkovskiy, Nov 28 2020
G.f.: 1 + Sum_{n >= 1} x^(n+8)/Product_{k = 0..n-1} (1 - x^(k+9)). - Peter Bala, Dec 01 2024

A026799 Number of partitions of n in which the least part is 6.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 2, 3, 3, 4, 4, 6, 6, 8, 9, 11, 12, 16, 17, 21, 24, 29, 32, 40, 44, 53, 60, 71, 80, 96, 107, 126, 143, 167, 188, 221, 248, 288, 326, 376, 424, 491, 552, 634, 716, 819, 922, 1056, 1187, 1353, 1523, 1730, 1944, 2209, 2478, 2806, 3151
Offset: 0

Views

Author

Keywords

Comments

a(n) is also the number of not necessarily connected 2-regular graphs on n-vertices with girth exactly 6 (all such graphs are simple). Each integer part i corresponds to an i-cycle; the addition of integers corresponds to the disconnected union of cycles.

Examples

			a(0)=0 because there does not exist a least part of the empty partition.
The  a(6)=1 partition is 6.
The a(12)=1 partition is 6+6.
The a(13)=1 partition is 6+7.
.............................
The a(17)=1 partition is 6+11.
The a(18)=2 partitions are 6+6+6 and 6+12.
		

Crossrefs

Essentially the same as A185326.
Not necessarily connected 2-regular graphs with girth at least g [partitions into parts >= g]: A026807 (triangle); chosen g: A000041 (g=1 -- multigraphs with loops allowed), A002865 (g=2 -- multigraphs with loops forbidden), A008483 (g=3), A008484 (g=4), A185325(g=5), A185326 (g=6), A185327 (g=7), A185328 (g=8), A185329 (g=9).
Not necessarily connected 2-regular graphs with girth exactly g [partitions with smallest part g]: A026794 (triangle); chosen g: A002865 (g=2 -- multigraphs with at least one pair of parallel edges, but loops forbidden), A026796 (g=3), A026797 (g=4), A026798 (g=5), this sequence (g=6), A026800 (g=7), A026801 (g=8), A026802 (g=9), A026803 (g=10). - Jason Kimberley, Feb 04 2011

Programs

  • Magma
    p :=  func< n | n lt 0 select 0 else NumberOfPartitions(n) >;
    A026799 := func< n | p(n-6)-p(n-7)-p(n-8)+p(n-11)+p(n-12)+p(n-13)- p(n-14)-p(n-15)-p(n-16)+p(n-19)+p(n-20)-p(n-21) >; // Jason Kimberley, Feb 04 2011
    
  • Magma
    R:=PowerSeriesRing(Integers(), 60); [0,0,0,0,0,0] cat Coefficients(R!( x^6/(&*[1-x^(m+6): m in [0..70]]) )); // G. C. Greubel, Nov 03 2019
    
  • Maple
    ZL := [ B,{B=Set(Set(Z, card>=6))}, unlabeled ]: 0,0,0,0,0,0, seq(combstruct[count](ZL, size=n), n=0..63); # Zerinvary Lajos, Mar 13 2007
    seq(coeff(series(x^6/mul(1-x^(m+6), m=0..70), x, n+1), x, n), n = 0..65); # G. C. Greubel, Nov 03 2019
  • Mathematica
    f[1, 1]=f[0, k_]=1; f[n_, k_]:= f[n, k] = If[n<0, 0, If[k>n, 0, If[k==n, 1, f[n, k+1] +f[n-k, k]]]]; Join[{0,0,0,0,0,0}, Table[f[n, 6], {n, 0, 65}]] (* Robert G. Wilson v, Jan 31 2011 *)
    CoefficientList[Series[x^6/QPochhammer[x^6, x], {x,0,70}], x] (* G. C. Greubel, Nov 03 2019 *)
    Join[{0},Table[Count[IntegerPartitions[n][[;;,-1]],6],{n,70}]] (* Harvey P. Dale, Dec 27 2023 *)
  • PARI
    my(x='x+O('x^60)); concat([0,0,0,0,0,0], Vec(x^6/prod(m=0,70, 1-x^(m+6)))) \\ G. C. Greubel, Nov 03 2019
    
  • Sage
    def A026799_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( x^6/product((1-x^(m+6)) for m in (0..70)) ).list()
    A026799_list(65) # G. C. Greubel, Nov 03 2019

Formula

G.f.: x^6 * Product_{m>=6} 1/(1-x^m).
a(n) = p(n-6) -p(n-7) -p(n-8) +p(n-11) +p(n-12) +p(n-13) -p(n-14) -p(n-15) -p(n-16) +p(n-19) +p(n-20) -p(n-21) for n>0 where p(n) = A000041(n). - Shanzhen Gao, Oct 28 2010
a(n) ~ exp(Pi*sqrt(2*n/3)) * 5*Pi^5 / (18*sqrt(2)*n^(7/2)). - Vaclav Kotesovec, Jun 02 2018
G.f.: Sum_{k>=1} x^(6*k) / Product_{j=1..k-1} (1 - x^j). - Ilya Gutkovskiy, Nov 25 2020
Showing 1-10 of 22 results. Next