cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A026796 Number of partitions of n in which the least part is 3.

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 1, 1, 1, 2, 2, 3, 4, 5, 6, 9, 10, 13, 17, 21, 25, 33, 39, 49, 60, 73, 88, 110, 130, 158, 191, 230, 273, 331, 391, 468, 556, 660, 779, 927, 1087, 1284, 1510, 1775, 2075, 2438, 2842, 3323, 3872, 4510, 5237, 6095, 7056, 8182, 9465, 10945, 12625
Offset: 0

Views

Author

Keywords

Comments

Let b(k) be the number of partitions of k for which twice the number of ones is the number of parts, k = 0, 1, 2, ... . Then a(n+4) = b(n), n = 0, 1, 2, ... (conjectured). - George Beck, Aug 19 2017

Crossrefs

Essentially the same sequence as A008483.
Not necessarily connected 2-regular graphs with girth at least g [partitions into parts >= g]: A026807 (triangle); chosen g: A000041 (g=1 -- multigraphs with loops allowed), A002865 (g=2 -- multigraphs with loops forbidden), A008483 (g=3), A008484 (g=4), A185325(g=5), A185326 (g=6), A185327 (g=7), A185328 (g=8), A185329 (g=9).
Not necessarily connected 2-regular graphs with girth exactly g [partitions with smallest part g]: A026794 (triangle); chosen g: A002865 (g=2 -- multigraphs with at least one pair of parallel edges, but loops forbidden), this sequence (g=3), A026797 (g=4), A026798 (g=5), A026799 (g=6), A026800 (g=7), A026801 (g=8), A026802 (g=9), A026803 (g=10).
Not necessarily connected k-regular simple graphs girth exactly 3: A198313 (any k), A185643 (triangle); fixed k: this sequence (k=2), A185133 (k=3), A185143 (k=4), A185153 (k=5), A185163 (k=6).

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 60); [0,0,0] cat Coefficients(R!( x^3/(&*[1-x^(m+3): m in [0..70]]) )); // G. C. Greubel, Nov 02 2019
    
  • Maple
    seq(coeff(series(x^3/mul(1-x^(m+3), m=0..65), x, n+1), x, n), n = 0 .. 60); # G. C. Greubel, Nov 02 2019
  • Mathematica
    Table[Count[IntegerPartitions[n], p_ /; Min@p==3], {n, 0, 60}] (* George Beck Aug 19 2017 *)
    CoefficientList[Series[x^3/QPochhammer[x^3, x], {x,0,60}], x] (* G. C. Greubel, Nov 02 2019 *)
  • PARI
    a(n) = numbpart(n-3) - numbpart(n-4) - numbpart(n-5) + numbpart(n-6); \\ Michel Marcus, Aug 20 2014
    
  • PARI
    x='x+O('x^66); Vecrev(Pol(x^3*(1-x)*(1-x^2)/eta(x))) \\ Joerg Arndt, Aug 22 2014
    
  • Sage
    def A026796_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( x^3/product((1-x^(m+3)) for m in (0..65)) ).list()
    A026796_list(60) # G. C. Greubel, Nov 02 2019

Formula

G.f.: x^3 / Product_{m>=3} (1 - x^m).
a(n) = p(n-3) - p(n-4) - p(n-5) + p(n-6), where p(n) = A000041(n). - Bob Selcoe, Aug 07 2014
a(n) ~ exp(Pi*sqrt(2*n/3)) * Pi^2 / (12*sqrt(3)*n^2). - Vaclav Kotesovec, Jun 02 2018
G.f.: Sum_{k>=1} x^(3*k) / Product_{j=1..k-1} (1 - x^j). - Ilya Gutkovskiy, Nov 25 2020

Extensions

More terms from Michel Marcus, Aug 20 2014
a(0) = 0 prepended by Joerg Arndt, Aug 22 2014

A184943 Number of connected 4-regular simple graphs on n vertices with girth exactly 3.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 1, 2, 5, 16, 57, 263, 1532, 10747, 87948, 803885, 8020590, 86027734, 983417704, 11913817317, 152352034707, 2050055948375, 28951137255862, 428085461764471
Offset: 0

Views

Author

Jason Kimberley, Jan 25 2011

Keywords

Examples

			a(0)=0 because even though the null graph (on zero vertices) is vacuously 4-regular and connected, since it is acyclic, it has infinite girth.
The a(5)=1 complete graph on 5 vertices is 4-regular; it has 10 edges and 10 triangles.
		

Crossrefs

4-regular simple graphs with girth exactly 3: this sequence (connected), A185043 (disconnected), A185143 (not necessarily connected).
Connected k-regular simple graphs with girth exactly 3: A006923 (k=3), this sequence (k=4), A184953 (k=5), A184963 (k=6), A184973 (k=7), A184983 (k=8), A184993 (k=9).
Connected 4-regular simple graphs with girth at least g: A006820 (g=3), A033886 (g=4), A058343 (g=5), A058348 (g=6).
Connected 4-regular simple graphs with girth exactly g: this sequence (g=3), A184944 (g=4), A184945 (g=5).

Programs

  • Mathematica
    A[s_Integer] := With[{s6 = StringPadLeft[ToString[s], 6, "0"]}, Cases[ Import["https://oeis.org/A" <> s6 <> "/b" <> s6 <> ".txt", "Table"], {, }][[All, 2]]];
    A006820 = A@006820; A033886 = A@033886;
    a[n_] := A006820[[n + 1]] - A033886[[n + 1]];
    a /@ Range[0, 22] (* Jean-François Alcover, Jan 27 2020 *)

Formula

a(n) = A006820(n) - A033886(n).

Extensions

Term a(22) corrected and a(23) appended, due to the correction and extension of A006820 by Andrew Howroyd, from Jason Kimberley, Mar 13 2020

A185133 Number of not necessarily connected 3-regular simple graphs on 2n vertices with girth exactly 3.

Original entry on oeis.org

0, 0, 1, 1, 4, 15, 71, 428, 3406, 34270, 418621, 5937051, 94782437, 1670327647, 32090011476, 666351752261, 14859579573845
Offset: 0

Views

Author

Jason Kimberley, Mar 21 2012

Keywords

Crossrefs

Not necessarily connected k-regular simple graphs girth exactly 3: A198313 (any k), A185643 (triangle); fixed k: A026796 (k=2), this sequence (k=3), A185143 (k=4), A185153 (k=5), A185163 (k=6).
Not necessarily connected 3-regular simple graphs on 2n vertices with girth exactly g: A185130 (triangle); fixed g: this sequence (g=3), A185134 (g=4), A185135 (g=5), A185136 (g=6).

Formula

a(n) = A005638(n) - A185334(n).
a(n) = A006923(n) + A185033(n).

A198313 Number of, not necessarily connected, regular simple graphs on n vertices with girth exactly 3.

Original entry on oeis.org

0, 0, 0, 1, 1, 1, 4, 4, 15, 23, 162, 540, 18958, 389417, 50314520, 2942196930, 1698517018988
Offset: 0

Views

Author

Jason Kimberley, May 24 2012

Keywords

Crossrefs

Not necessarily connected k-regular simple graphs girth exactly 3: this sequence (any k), A185643 (triangle); fixed k: A026796 (k=2), A185133 (k=3), A185143 (k=4), A185153 (k=5), A185163 (k=6).
Not necessarily connected regular simple graphs girth exactly g: this sequence (g=3), A198314 (g=4), A198315 (g=5), A198316 (g=6), A198317 (g=7), A198318 (g=8).

Formula

a(n) = A186743(n) + A210713(n).
a(n) = A005176(n) - A185314(n).
a(n) is the sum of the n-th row of A185643.

A185144 Number of not necessarily connected 4-regular simple graphs on n vertices with girth exactly 4.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 2, 2, 12, 31, 220, 1606, 16829, 193900, 2452820, 32670331, 456028487, 6636066126, 100135577863, 1582718910743
Offset: 0

Views

Author

Jason Kimberley, Nov 04 2011

Keywords

Crossrefs

Not necessarily connected k-regular simple graphs girth exactly 4: A198314 (any k), A185644 (triangle); fixed k: A026797 (k=2), A185134 (k=3), this sequence (k=4).
A185143 (g=3), A185144 (g=4).
Not necessarily connected 4-regular simple graphs with girth exactly g: A185140 (triangle); fixed g: A185143 (g=3), this sequence (g=4).

Formula

a(n) = A184944(n) + A185044(n) = A185140(n,4).

Extensions

Corrected by Jason Kimberley, Jan 03 2013

A185043 Number of disconnected 4-regular simple graphs on n vertices with girth exactly 3.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 3, 8, 25, 88, 377, 2026, 13349, 104593, 930571, 9124627, 96699740, 1095467916, 13175254799, 167460501260, 2241576473025, 31510509517563, 464047467911837, 7143984462730072, 114749034352969037, 1919656978492976231
Offset: 0

Views

Author

Jason Kimberley, Feb 29 2012

Keywords

Crossrefs

4-regular simple graphs with girth exactly 3: A184943 (connected), this sequence (disconnected), A185143 (not necessarily connected).
Disconnected k-regular simple graphs with girth exactly 3: A210713 (any k), A210703 (triangle); for fixed k: A185033 (k=3), this sequence (k=4), A185053 (k=5), A185063 (k=6).
Disconnected 4-regular simple graphs with girth exactly g: this sequence (g=3), A185044 (g=4).

Formula

a(n) = A033483(n) - A185244(n).

Extensions

Terms a(27)-a(31), due to the extension of A006820 by Andrew Howroyd, from Jason Kimberley, Mar 16 2020

A185643 Triangular array E(n,k) counting, not necessarily connected, k-regular simple graphs on n vertices with girth exactly 3.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 0, 2, 0, 1, 0, 0, 1, 4, 5, 3, 1, 1, 0, 0, 2, 0, 16, 0, 4, 0, 1, 0, 0, 2, 15, 58, 59, 21, 5, 1, 1, 0, 0, 3, 0, 264, 0, 266, 0, 6, 0, 1, 0, 0, 4, 71, 1535, 7848, 7848, 1547, 94, 9, 1, 1, 0, 0, 5, 0, 10755, 0, 367860, 0, 10786, 0, 10, 0, 1
Offset: 1

Views

Author

Jason Kimberley, Feb 07 2013

Keywords

Examples

			01: 0;
02: 0, 0;
03: 0, 0, 1;
04: 0, 0, 0, 1;
05: 0, 0, 0, 0, 1;
06: 0, 0, 1, 1, 1, 1;
07: 0, 0, 1, 0, 2, 0, 1;
08: 0, 0, 1, 4, 5, 3, 1, 1;
09: 0, 0, 2, 0, 16, 0, 4, 0, 1;
10: 0, 0, 2, 15, 58, 59, 21, 5, 1, 1;
11: 0, 0, 3, 0, 264, 0, 266, 0, 6, 0, 1;
12: 0, 0, 4, 71, 1535, 7848, 7848, 1547, 94, 9, 1, 1;
13: 0, 0, 5, 0, 10755, 0, 367860, 0, 10786, 0, 10, 0, 1;
14: 0, 0, 6, 428, 87973, 3459379, 21609300, 21609300, 3459386, 88193, 540, 13, 1, 1;
15: 0, 0, 9, 0, 803973, 0, 1470293675, 0, 1470293676, 0, 805579, 0, 17, 0, 1;
16: 0, 0, 10, 3406, 8020967, 2585136353, 113314233804, 733351105934, 733351105934, 113314233813, 2585136741, 8037796, 4207, 21, 1, 1;
		

Crossrefs

The sum of the n-th row of this sequence is A198313(n).
Not necessarily connected k-regular simple graphs girth exactly 3: A198313 (any k), this sequence (triangle); fixed k: A026796 (k=2), A185133 (k=3), A185143 (k=4), A185153 (k=5), A185163 (k=6).

Formula

E(n,k) = A186733(n,k) + A210703(n,k), noting that A210703 is a tabf.
E(n,k) = A051031(n,k) - A185304(n,k), noting that A185304 is a tabf.

A185153 Number of not necessarily connected 5-regular simple graphs on 2n vertices with girth exactly 3.

Original entry on oeis.org

0, 0, 0, 1, 3, 59, 7848, 3459379, 2585136353, 2807104852102
Offset: 0

Views

Author

Jason Kimberley, Mar 12 2012

Keywords

Crossrefs

Not necessarily connected k-regular simple graphs girth exactly 3: A198313 (any k), A185643 (triangle); fixed k: A026796 (k=2), A185133 (k=3), A185143 (k=4), this sequence (k=5), A185163 (k=6).

Formula

a(n) = A165626(n) - A185354(n).
a(n) = A184953(n) + A185053(n).

A185163 Number of not necessarily connected 6-regular simple graphs on n vertices with girth exactly 3.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 1, 1, 4, 21, 266, 7848, 367860, 21609300, 1470293675, 113314233804, 9799685588955
Offset: 0

Views

Author

Jason Kimberley, Mar 21 2012

Keywords

Crossrefs

Not necessarily connected k-regular simple graphs girth exactly 3: A198313 (any k), A185643 (triangle); fixed k: A026796 (k=2), A185133 (k=3), A185143 (k=4), A185153 (k=5), this sequence (k=6).

Formula

a(n) = A165627(n) - A185364(n).
a(n) = A184953(n) + A185053(n).

A185140 Irregular triangle E(n,g) counting not necessarily connected 4-regular simple graphs on n vertices with girth exactly g.

Original entry on oeis.org

1, 1, 2, 5, 1, 16, 0, 58, 2, 264, 2, 1535, 12, 10755, 31, 87973, 220, 803973, 1606, 8020967, 16829, 86029760, 193900, 983431053, 2452820, 11913921910, 32670331, 1, 152352965278, 456028487, 2, 2050065073002, 6636066126, 8, 28466234288520, 100135577863, 131, 8020967, 16829
Offset: 5

Views

Author

Jason Kimberley, Jan 06 2013

Keywords

Comments

The first column is for girth at least 3. The column for girth g commences when n reaches A037233(g).

Examples

			05: 1;
06: 1;
07: 2;
08: 5, 1;
09: 16, 0;
10: 58, 2;
11: 264, 2;
12: 1535, 12;
13: 10755, 31;
14: 87973, 220;
15: 803973, 1606;
16: 8020967, 16829;
17: 86029760, 193900;
18: 983431053, 2452820;
19: 11913921910, 32670331, 1;
20: 152352965278, 456028487, 2;
21: 2050065073002, 6636066126, 8;
22: 28466234288520, 100135577863, 131;
		

Crossrefs

Initial columns of this triangle: A185143 (g=3), A185144 (g=4).

Formula

The n-th row is the sequence of differences of the n-th row of A185340:
E(n,g) = A185340(n,g) - A185340(n,g+1), once we have appended 0 to each row of A185340.
Hence the sum of the n-th row is A185340(n,3) = A033301(n).
Showing 1-10 of 10 results.