cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A184943 Number of connected 4-regular simple graphs on n vertices with girth exactly 3.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 1, 2, 5, 16, 57, 263, 1532, 10747, 87948, 803885, 8020590, 86027734, 983417704, 11913817317, 152352034707, 2050055948375, 28951137255862, 428085461764471
Offset: 0

Views

Author

Jason Kimberley, Jan 25 2011

Keywords

Examples

			a(0)=0 because even though the null graph (on zero vertices) is vacuously 4-regular and connected, since it is acyclic, it has infinite girth.
The a(5)=1 complete graph on 5 vertices is 4-regular; it has 10 edges and 10 triangles.
		

Crossrefs

4-regular simple graphs with girth exactly 3: this sequence (connected), A185043 (disconnected), A185143 (not necessarily connected).
Connected k-regular simple graphs with girth exactly 3: A006923 (k=3), this sequence (k=4), A184953 (k=5), A184963 (k=6), A184973 (k=7), A184983 (k=8), A184993 (k=9).
Connected 4-regular simple graphs with girth at least g: A006820 (g=3), A033886 (g=4), A058343 (g=5), A058348 (g=6).
Connected 4-regular simple graphs with girth exactly g: this sequence (g=3), A184944 (g=4), A184945 (g=5).

Programs

  • Mathematica
    A[s_Integer] := With[{s6 = StringPadLeft[ToString[s], 6, "0"]}, Cases[ Import["https://oeis.org/A" <> s6 <> "/b" <> s6 <> ".txt", "Table"], {, }][[All, 2]]];
    A006820 = A@006820; A033886 = A@033886;
    a[n_] := A006820[[n + 1]] - A033886[[n + 1]];
    a /@ Range[0, 22] (* Jean-François Alcover, Jan 27 2020 *)

Formula

a(n) = A006820(n) - A033886(n).

Extensions

Term a(22) corrected and a(23) appended, due to the correction and extension of A006820 by Andrew Howroyd, from Jason Kimberley, Mar 13 2020

A185033 Number of disconnected 3-regular simple graphs on 2n vertices with girth exactly 3.

Original entry on oeis.org

0, 0, 0, 0, 1, 2, 8, 29, 138, 774, 5678, 53324, 622716, 8604351, 135344959, 2363662004, 45134533117, 933058713014, 20735549517852, 492653820710746
Offset: 0

Views

Author

Jason Kimberley, Feb 29 2012

Keywords

Crossrefs

Disconnected k-regular simple graphs with girth exactly 3: A210713 (any k), A210703 (triangle); for fixed k: this sequence (k=3), A185043 (k=4), A185053 (k=5), A185063 (k=6).
Disconnected 3-regular simple graphs with girth exactly g: this sequence (g=3), A185034 (g=4), A185035 (g=5), A185036 (g=6), A185037 (g=7).

Formula

a(n) = A165653(n) - A185234(n).

A185143 Number of not necessarily connected 4-regular simple graphs on n vertices with girth exactly 3.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 1, 2, 5, 16, 58, 264, 1535, 10755, 87973, 803973, 8020967, 86029760, 983431053, 11913921910, 152352965278, 2050065073002, 28951233955602, 428086557232387
Offset: 0

Views

Author

Jason Kimberley, Mar 12 2012

Keywords

Crossrefs

4-regular simple graphs with girth exactly 3: A184943 (connected), A185043 (disconnected), this sequence (not necessarily connected).
Not necessarily connected k-regular simple graphs girth exactly 3: A198313 (any k), A185643 (triangle); fixed k: A026796 (k=2), A185133 (k=3), this sequence (k=4), A185153 (k=5), A185163 (k=6).
Not necessarily connected 4-regular simple graphs with girth exactly g: A185140 (triangle); fixed g: this sequence (g=3), A185144 (g=4).

Formula

a(n) = A033301(n) - A185344(n).
a(n) = A184943(n) + A185043(n).

Extensions

a(22) corrected and a(23) appended, due to the correction and extension of A033301 by Andrew Howroyd, from Jason Kimberley, Mar 14 2020

A185053 Number of disconnected 5-regular simple graphs on 2n vertices with girth exactly 3.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 3, 66, 8029, 3484759, 2595985769, 2815099031409
Offset: 0

Views

Author

Jason Kimberley, Mar 10 2012

Keywords

Crossrefs

Disconnected k-regular simple graphs with girth exactly 3: A210713 (any k), A210703 (triangle); for fixed k: A185033 (k=3), A185043 (k=4), this sequence (k=5), A185063 (k=6).

Formula

a(n) = A165655(n) - A185254(n).

A210703 Triangular array D(n,k) counting disconnected k-regular simple graphs on n vertices with girth exactly 3.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 2, 0, 0, 0, 2, 2, 1, 0, 0, 3, 0, 1, 0, 0, 4, 8, 3, 1, 0, 0, 5, 0, 8, 0, 0, 0, 6, 29, 25, 3, 1, 0, 0, 9, 0, 88, 0, 1, 0, 0, 10, 138, 377, 66, 5, 1, 0, 0, 13, 0, 2026, 0, 25, 0, 0, 0, 17, 774, 13349, 8029, 297, 5, 1, 0, 0, 21, 0, 104593, 0, 8199, 0, 1, 0, 0, 25, 5678, 930571, 3484759, 377004, 1562, 7, 1
Offset: 2

Views

Author

Jason Kimberley, Jan 21 2013

Keywords

Examples

			2: 0;
3: 0;
4: 0, 0;
5: 0, 0;
6: 0, 0, 1;
7: 0, 0, 1;
8: 0, 0, 1, 1;
9: 0, 0, 2, 0;
10: 0, 0, 2, 2, 1;
11: 0, 0, 3, 0, 1;
12: 0, 0, 4, 8, 3, 1;
13: 0, 0, 5, 0, 8, 0;
14: 0, 0, 6, 29, 25, 3, 1;
15: 0, 0, 9, 0, 88, 0, 1;
16: 0, 0, 10, 138, 377, 66, 5, 1;
17: 0, 0, 13, 0, 2026, 0, 25, 0;
18: 0, 0, 17, 774, 13349, 8029, 297, 5, 1;
19: 0, 0, 21, 0, 104593, 0, 8199, 0, 1;
20: 0, 0, 25, 5678, 930571, 3484759, 377004, 1562, 7, 1;
21: 0, 0, 33, 0, 9124627, 0, 22014143, 0, 100, 0;
22: 0, 0, 39, 53324, 96699740, 2595985769, 1493574756, 21617036, 10901, 9, 1;
23: 0, 0, 49, 0, 1095467916, 0, 114880777582, 0, 3470736, 0, 1;
24: 0, 0, 60, 622716, 13175254799, 2815099031409, 9919463450854, 733460349818, 1473822243, 88238, 11, 1;
		

Crossrefs

The sum of the n-th row is A210713(n).
Disconnected k-regular simple graphs with girth exactly 3: A210713 (any k), this sequence (triangle); for a fixed k: A185033 (k=3), A185043 (k=4), A185053 (k=5), A185063 (k=6).

Formula

D(n,k) = A068933(n,k) - A185204(n,k) [the former is padded to be a tabl but the latter is a tabf].
D(n,k) = A185643(n,k) - A186733(n,k) [both are tabl but the result is tabf].

A210713 Number of disconnected regular simple graphs on n vertices with girth exactly 3.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 5, 4, 16, 13, 64, 98, 597, 2064, 22472, 112814, 4799607, 31138903, 4207941575, 115979716284, 13482672620149
Offset: 0

Views

Author

Jason Kimberley, Apr 02 2012

Keywords

Crossrefs

This sequence is the row sum sequence of the triangle A210703.
Disconnected k-regular simple graphs with girth exactly 3: this sequence (any k), A210703 (triangle); for fixed k: A185033 (k=3), A185043 (k=4), A185053 (k=5), A185063 (k=6).

Formula

a(n) = A068932(n) - A185214(n).

A185044 Number of disconnected 4-regular simple graphs on n vertices with girth exactly 4.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 2, 2, 15, 35, 247, 1692, 17409, 197924, 2492824, 33117880, 461597957, 6709514218, 101153412903, 1597440868898
Offset: 0

Views

Author

Jason Kimberley, Nov 04 2011

Keywords

Comments

Only one component need have girth exactly four; the other components need only have girth at least four.
First differs from A185244 at n = 38, the smallest n where A185245 is nonzero.

Crossrefs

Disconnected 4-regular simple graphs with girth exactly g: A185043 (g=3), this sequence (g=4).
Disconnected k-regular simple graphs with girth exactly 4: A185034 (k=3), this sequence (k=4).

Formula

a(n) = A185244(n) - A185245(n).
a(n) = A185144(n) - A184944(n).

Extensions

a(31) corrected by the author, propagated from A185244, Jan 05 2013

A185063 Number of disconnected 6-regular simple graphs on n vertices with girth exactly 3.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 5, 25, 297, 8199, 377004, 22014143, 1493574756, 114880777582, 9919463450854
Offset: 0

Views

Author

Jason Kimberley, Mar 10 2012

Keywords

Crossrefs

Disconnected k-regular simple graphs with girth exactly 3: A210713 (any k), A210703 (triangle); for fixed k: A185033 (k=3), A185043 (k=4), A185053 (k=5), this sequence (k=6).

Formula

a(n) = A165656(n) - A185264(n).
Showing 1-8 of 8 results.