cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A185033 Number of disconnected 3-regular simple graphs on 2n vertices with girth exactly 3.

Original entry on oeis.org

0, 0, 0, 0, 1, 2, 8, 29, 138, 774, 5678, 53324, 622716, 8604351, 135344959, 2363662004, 45134533117, 933058713014, 20735549517852, 492653820710746
Offset: 0

Views

Author

Jason Kimberley, Feb 29 2012

Keywords

Crossrefs

Disconnected k-regular simple graphs with girth exactly 3: A210713 (any k), A210703 (triangle); for fixed k: this sequence (k=3), A185043 (k=4), A185053 (k=5), A185063 (k=6).
Disconnected 3-regular simple graphs with girth exactly g: this sequence (g=3), A185034 (g=4), A185035 (g=5), A185036 (g=6), A185037 (g=7).

Formula

a(n) = A165653(n) - A185234(n).

A185043 Number of disconnected 4-regular simple graphs on n vertices with girth exactly 3.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 3, 8, 25, 88, 377, 2026, 13349, 104593, 930571, 9124627, 96699740, 1095467916, 13175254799, 167460501260, 2241576473025, 31510509517563, 464047467911837, 7143984462730072, 114749034352969037, 1919656978492976231
Offset: 0

Views

Author

Jason Kimberley, Feb 29 2012

Keywords

Crossrefs

4-regular simple graphs with girth exactly 3: A184943 (connected), this sequence (disconnected), A185143 (not necessarily connected).
Disconnected k-regular simple graphs with girth exactly 3: A210713 (any k), A210703 (triangle); for fixed k: A185033 (k=3), this sequence (k=4), A185053 (k=5), A185063 (k=6).
Disconnected 4-regular simple graphs with girth exactly g: this sequence (g=3), A185044 (g=4).

Formula

a(n) = A033483(n) - A185244(n).

Extensions

Terms a(27)-a(31), due to the extension of A006820 by Andrew Howroyd, from Jason Kimberley, Mar 16 2020

A185643 Triangular array E(n,k) counting, not necessarily connected, k-regular simple graphs on n vertices with girth exactly 3.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 0, 2, 0, 1, 0, 0, 1, 4, 5, 3, 1, 1, 0, 0, 2, 0, 16, 0, 4, 0, 1, 0, 0, 2, 15, 58, 59, 21, 5, 1, 1, 0, 0, 3, 0, 264, 0, 266, 0, 6, 0, 1, 0, 0, 4, 71, 1535, 7848, 7848, 1547, 94, 9, 1, 1, 0, 0, 5, 0, 10755, 0, 367860, 0, 10786, 0, 10, 0, 1
Offset: 1

Views

Author

Jason Kimberley, Feb 07 2013

Keywords

Examples

			01: 0;
02: 0, 0;
03: 0, 0, 1;
04: 0, 0, 0, 1;
05: 0, 0, 0, 0, 1;
06: 0, 0, 1, 1, 1, 1;
07: 0, 0, 1, 0, 2, 0, 1;
08: 0, 0, 1, 4, 5, 3, 1, 1;
09: 0, 0, 2, 0, 16, 0, 4, 0, 1;
10: 0, 0, 2, 15, 58, 59, 21, 5, 1, 1;
11: 0, 0, 3, 0, 264, 0, 266, 0, 6, 0, 1;
12: 0, 0, 4, 71, 1535, 7848, 7848, 1547, 94, 9, 1, 1;
13: 0, 0, 5, 0, 10755, 0, 367860, 0, 10786, 0, 10, 0, 1;
14: 0, 0, 6, 428, 87973, 3459379, 21609300, 21609300, 3459386, 88193, 540, 13, 1, 1;
15: 0, 0, 9, 0, 803973, 0, 1470293675, 0, 1470293676, 0, 805579, 0, 17, 0, 1;
16: 0, 0, 10, 3406, 8020967, 2585136353, 113314233804, 733351105934, 733351105934, 113314233813, 2585136741, 8037796, 4207, 21, 1, 1;
		

Crossrefs

The sum of the n-th row of this sequence is A198313(n).
Not necessarily connected k-regular simple graphs girth exactly 3: A198313 (any k), this sequence (triangle); fixed k: A026796 (k=2), A185133 (k=3), A185143 (k=4), A185153 (k=5), A185163 (k=6).

Formula

E(n,k) = A186733(n,k) + A210703(n,k), noting that A210703 is a tabf.
E(n,k) = A051031(n,k) - A185304(n,k), noting that A185304 is a tabf.

A185053 Number of disconnected 5-regular simple graphs on 2n vertices with girth exactly 3.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 3, 66, 8029, 3484759, 2595985769, 2815099031409
Offset: 0

Views

Author

Jason Kimberley, Mar 10 2012

Keywords

Crossrefs

Disconnected k-regular simple graphs with girth exactly 3: A210713 (any k), A210703 (triangle); for fixed k: A185033 (k=3), A185043 (k=4), this sequence (k=5), A185063 (k=6).

Formula

a(n) = A165655(n) - A185254(n).

A210713 Number of disconnected regular simple graphs on n vertices with girth exactly 3.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 5, 4, 16, 13, 64, 98, 597, 2064, 22472, 112814, 4799607, 31138903, 4207941575, 115979716284, 13482672620149
Offset: 0

Views

Author

Jason Kimberley, Apr 02 2012

Keywords

Crossrefs

This sequence is the row sum sequence of the triangle A210703.
Disconnected k-regular simple graphs with girth exactly 3: this sequence (any k), A210703 (triangle); for fixed k: A185033 (k=3), A185043 (k=4), A185053 (k=5), A185063 (k=6).

Formula

a(n) = A068932(n) - A185214(n).

A185063 Number of disconnected 6-regular simple graphs on n vertices with girth exactly 3.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 5, 25, 297, 8199, 377004, 22014143, 1493574756, 114880777582, 9919463450854
Offset: 0

Views

Author

Jason Kimberley, Mar 10 2012

Keywords

Crossrefs

Disconnected k-regular simple graphs with girth exactly 3: A210713 (any k), A210703 (triangle); for fixed k: A185033 (k=3), A185043 (k=4), A185053 (k=5), this sequence (k=6).

Formula

a(n) = A165656(n) - A185264(n).
Showing 1-6 of 6 results.