cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A005638 Number of unlabeled trivalent (or cubic) graphs with 2n nodes.

Original entry on oeis.org

1, 0, 1, 2, 6, 21, 94, 540, 4207, 42110, 516344, 7373924, 118573592, 2103205738, 40634185402, 847871397424, 18987149095005, 454032821688754, 11544329612485981, 310964453836198311, 8845303172513781271
Offset: 0

Views

Author

Keywords

Comments

Because the triangle A051031 is symmetric, a(n) is also the number of (2n-4)-regular graphs on 2n vertices.

References

  • R. C. Read and R. J. Wilson, An Atlas of Graphs, Oxford, 1998.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000421.
Row sums of A275744.
3-regular simple graphs: A002851 (connected), A165653 (disconnected), this sequence (not necessarily connected).
Regular graphs A005176 (any degree), A051031 (triangular array), chosen degrees: A000012 (k=0), A059841 (k=1), A008483 (k=2), this sequence (k=3), A033301 (k=4), A165626 (k=5), A165627 (k=6), A165628 (k=7), A180260 (k=8).
Not necessarily connected 3-regular simple graphs with girth *at least* g: this sequence (g=3), A185334 (g=4), A185335 (g=5), A185336 (g=6).
Not necessarily connected 3-regular simple graphs with girth *exactly* g: A185133 (g=3), A185134 (g=4), A185135 (g=5), A185136 (g=6).

Formula

a(n) = A002851(n) + A165653(n).
This sequence is the Euler transformation of A002851.

Extensions

More terms from Ronald C. Read.
Comment, formulas, and (most) crossrefs by Jason Kimberley, 2009 and 2012

A026797 Number of partitions of n in which the least part is 4.

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 2, 2, 3, 3, 5, 5, 7, 8, 11, 12, 16, 18, 24, 27, 34, 39, 50, 57, 70, 81, 100, 115, 140, 161, 195, 225, 269, 311, 371, 427, 505, 583, 688, 791, 928, 1067, 1248, 1434, 1668, 1914, 2223, 2546, 2945, 3370, 3889
Offset: 1

Views

Author

Keywords

Comments

a(n) is also the number of, not necessarily connected, 2-regular simple graphs girth exactly 4. - Jason Kimberley, Feb 22 2013

Crossrefs

Essentially the same as A008484.
Not necessarily connected 2-regular graphs with girth at least g [partitions into parts >= g]: A026807 (triangle); chosen g: A000041 (g=1 -- multigraphs with loops allowed), A002865 (g=2 -- multigraphs with loops forbidden), A008483 (g=3), A008484 (g=4), A185325(g=5), A185326 (g=6), A185327 (g=7), A185328 (g=8), A185329 (g=9).
Not necessarily connected 2-regular graphs with girth exactly g [partitions with smallest part g]: A026794 (triangle); chosen g: A002865 (g=2 -- multigraphs with at least one pair of parallel edges, but loops forbidden), A026796 (g=3), this sequence (g=4), A026798 (g=5), A026799 (g=6), A026800 (g=7), A026801 (g=8), A026802 (g=9), A026803 (g=10).
Not necessarily connected k-regular simple graphs girth exactly 4: A198314 (any k), A185644 (triangle); fixed k: this sequence (k=2), A185134 (k=3), A185144 (k=4).

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 60); [0,0,0] cat Coefficients(R!( x^4/(&*[1-x^(m+4): m in [0..70]]) )); // G. C. Greubel, Nov 03 2019
    
  • Maple
    seq(coeff(series(x^4/mul(1-x^(m+4), m=0..65), x, n+1), x, n), n = 1..60); # G. C. Greubel, Nov 03 2019
  • Mathematica
    Table[Count[IntegerPartitions[n],?(Min[#]==4&)],{n,60}] (* _Harvey P. Dale, May 13 2012 *)
    Rest@CoefficientList[Series[x^4/QPochhammer[x^4, x], {x,0,60}], x] (* G. C. Greubel, Nov 03 2019 *)
  • PARI
    my(x='x+O('x^60)); concat([0,0,0], Vec(x^4/prod(m=0,70, 1-x^(m+4)))) \\ G. C. Greubel, Nov 03 2019
    
  • Sage
    def A026797_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( x^4/product((1-x^(m+4)) for m in (0..60)) ).list()
    a=A026797_list(60); a[1:] # G. C. Greubel, Nov 03 2019

Formula

G.f.: x^4 * Product_{m>=4} 1/(1-x^m).
a(n) ~ exp(Pi*sqrt(2*n/3)) * Pi^3 / (12*sqrt(2)*n^(5/2)). - Vaclav Kotesovec, Jun 02 2018
G.f.: Sum_{k>=1} x^(4*k) / Product_{j=1..k-1} (1 - x^j). - Ilya Gutkovskiy, Nov 25 2020

A185133 Number of not necessarily connected 3-regular simple graphs on 2n vertices with girth exactly 3.

Original entry on oeis.org

0, 0, 1, 1, 4, 15, 71, 428, 3406, 34270, 418621, 5937051, 94782437, 1670327647, 32090011476, 666351752261, 14859579573845
Offset: 0

Views

Author

Jason Kimberley, Mar 21 2012

Keywords

Crossrefs

Not necessarily connected k-regular simple graphs girth exactly 3: A198313 (any k), A185643 (triangle); fixed k: A026796 (k=2), this sequence (k=3), A185143 (k=4), A185153 (k=5), A185163 (k=6).
Not necessarily connected 3-regular simple graphs on 2n vertices with girth exactly g: A185130 (triangle); fixed g: this sequence (g=3), A185134 (g=4), A185135 (g=5), A185136 (g=6).

Formula

a(n) = A005638(n) - A185334(n).
a(n) = A006923(n) + A185033(n).

A185334 Number of not necessarily connected 3-regular simple graphs on 2n vertices with girth at least 4.

Original entry on oeis.org

1, 0, 0, 1, 2, 6, 23, 112, 801, 7840, 97723, 1436873, 23791155, 432878091, 8544173926, 181519645163, 4127569521160
Offset: 0

Views

Author

Jason Kimberley, Feb 15 2011

Keywords

Comments

The null graph on 0 vertices is vacuously 3-regular; since it is acyclic, it has infinite girth.

Crossrefs

3-regular simple graphs with girth at least 4: A014371 (connected), A185234 (disconnected), this sequence (not necessarily connected).
Not necessarily connected k-regular simple graphs with girth at least 4: A185314 (any k), A185304 (triangle); specified degree k: A008484 (k=2), this sequence (k=3), A185344 (k=4), A185354 (k=5), A185364 (k=6).
Not necessarily connected 3-regular simple graphs with girth *at least* g: A005638 (g=3), this sequence (g=4), A185335 (g=5), A185336 (g=6).
Not necessarily connected 3-regular simple graphs with girth *exactly* g: A185133 (g=3), A185134 (g=4), A185135 (g=5), A185136 (g=6).

Programs

Formula

Euler transformation of A014371.

A185144 Number of not necessarily connected 4-regular simple graphs on n vertices with girth exactly 4.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 2, 2, 12, 31, 220, 1606, 16829, 193900, 2452820, 32670331, 456028487, 6636066126, 100135577863, 1582718910743
Offset: 0

Views

Author

Jason Kimberley, Nov 04 2011

Keywords

Crossrefs

Not necessarily connected k-regular simple graphs girth exactly 4: A198314 (any k), A185644 (triangle); fixed k: A026797 (k=2), A185134 (k=3), this sequence (k=4).
A185143 (g=3), A185144 (g=4).
Not necessarily connected 4-regular simple graphs with girth exactly g: A185140 (triangle); fixed g: A185143 (g=3), this sequence (g=4).

Formula

a(n) = A184944(n) + A185044(n) = A185140(n,4).

Extensions

Corrected by Jason Kimberley, Jan 03 2013

A185335 Number of not necessarily connected 3-regular simple graphs on 2n vertices with girth at least 5.

Original entry on oeis.org

1, 0, 0, 0, 0, 1, 2, 9, 49, 455, 5784, 90940, 1620491, 31478651, 656784488, 14621878339, 345975756388
Offset: 0

Views

Author

Jason Kimberley, Jan 28 2011

Keywords

Crossrefs

3-regular simple graphs with girth at least 5: A014372 (connected), A185235 (disconnected), this sequence (not necessarily connected).
Not necessarily connected 3-regular simple graphs with girth *at least* g: A005638 (g=3), A185334 (g=4), this sequence (g=5), A185336 (g=6).
Not necessarily connected 3-regular simple graphs with girth *exactly* g: A185133 (g=3), A185134 (g=4), A185135 (g=5), A185136 (g=6).
Not necessarily connected k-regular simple graphs with girth at least 5: A185315 (any k), A185305 (triangle); specified degree k: A185325 (k=2), this sequence (k=3).

Programs

Formula

This sequence is the Euler transformation of A014372.

A198314 Number of, not necessarily connected, regular simple graphs on n vertices with girth exactly 4.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 1, 0, 4, 1, 8, 3, 37, 33, 335, 1610, 17985, 193911, 2867313, 32674066, 1581626531, 6705889862
Offset: 0

Views

Author

Jason Kimberley, Dec 12 2012

Keywords

Crossrefs

Not necessarily connected k-regular simple graphs girth exactly 4: this sequence (any k), A185644 (triangle); fixed k: A026797 (k=2), A185134 (k=3), A185144 (k=4).
Not necessarily connected regular simple graphs girth exactly g: A198313 (g=3), this sequence (g=4), A198315 (g=5), A198316 (g=6), A198317 (g=7), A198318 (g=8).

Formula

a(n) = A186744(n) + A210714(n).
a(n) = A185314(n) - A185315(n).

Extensions

a(10) corrected from 9 to 8 by Jason Kimberley, Feb 22 2013

A185135 Number of not necessarily connected 3-regular simple graphs on 2n vertices with girth exactly 5.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 2, 8, 48, 450, 5752, 90555, 1612917, 31297424, 652159986, 14499787794, 342646826428
Offset: 0

Views

Author

Jason Kimberley, Mar 21 2012

Keywords

Crossrefs

Not necessarily connected 3-regular simple graphs on 2n vertices with girth exactly g: A185130 (triangle); fixed g: A185133 (g=3), A185134 (g=4), this sequence (g=5), A185136 (g=6).

Formula

a(n) = A185335(n) - A185336(n).
a(n) = A006925(n) + A185035(n).

A185136 Number of not necessarily connected 3-regular simple graphs on 2n vertices with girth exactly 6.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 1, 1, 5, 32, 385, 7573, 181224, 4624481, 122089999, 3328899592, 93988909792
Offset: 0

Views

Author

Jason Kimberley, Mar 21 2012

Keywords

Crossrefs

Not necessarily connected 3-regular simple graphs on 2n vertices with girth exactly g: A185130 (triangle); fixed g: A185133 (g=3), A185134 (g=4), A185135 (g=5), this sequence (g=6).

Formula

a(n) = A006926(n) + A185036(n).

A185644 Triangular array E(n,k) counting, not necessarily connected, k-regular simple graphs on n vertices with girth exactly 4.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 2, 1, 0, 0, 1, 0, 0, 0, 0, 0, 5, 2, 1, 0, 0, 1, 0, 2, 0, 0, 0, 2, 21, 12, 1, 1, 0, 0, 2, 0, 31, 0, 0, 0, 0, 3, 103, 220, 7, 1, 1, 0, 0, 3, 0, 1606, 0, 1, 0, 0, 0, 5, 752, 16829, 388, 9, 1, 1, 0, 0, 5, 0, 193900, 0, 6, 0, 0, 0
Offset: 1

Views

Author

Jason Kimberley, Feb 22 2013

Keywords

Comments

In the n-th row 0 <= 2k <= n.

Examples

			01: 0;
02: 0, 0;
03: 0, 0;
04: 0, 0, 1;
05: 0, 0, 0;
06: 0, 0, 0, 1;
07: 0, 0, 0, 0;
08: 0, 0, 1, 2, 1;
09: 0, 0, 1, 0, 0;
10: 0, 0, 0, 5, 2, 1;
11: 0, 0, 1, 0, 2, 0;
12: 0, 0, 2, 21, 12, 1, 1;
13: 0, 0, 2, 0, 31, 0, 0;
14: 0, 0, 3, 103, 220, 7, 1, 1;
15: 0, 0, 3, 0, 1606, 0, 1, 0;
16: 0, 0, 5, 752, 16829, 388, 9, 1, 1;
17: 0, 0, 5, 0, 193900, 0, 6, 0, 0;
18: 0, 0, 7, 7385, 2452820, 406824, 267, 8, 1, 1;
19: 0, 0, 8, 0, 32670331, 0, 3727, 0, 0, 0;
20: 0, 0, 11, 91939, 456028487, 1125022326, 483012, 741, 13, 1, 1;
21: 0, 0, 12, 0, 6636066126, 0, 69823723, 0, 1, 0, 0;
22: 0, 0, 16, 1345933, 100135577863, 3813549359275, 14836130862, 2887493, ?, 14, 1;
		

Crossrefs

The sum of the n-th row of this sequence is A198314(n).
Not necessarily connected k-regular simple graphs girth exactly 4: A198314 (any k), this sequence (triangle); fixed k: A026797 (k=2), A185134 (k=3), A185144 (k=4).

Formula

E(n,k) = A186734(n,k) + A210704(n,k), noting the differing row lengths.
E(n,k) = A185304(n,k) - A185305(n,k), noting the differing row lengths.
Showing 1-10 of 12 results. Next