cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A005638 Number of unlabeled trivalent (or cubic) graphs with 2n nodes.

Original entry on oeis.org

1, 0, 1, 2, 6, 21, 94, 540, 4207, 42110, 516344, 7373924, 118573592, 2103205738, 40634185402, 847871397424, 18987149095005, 454032821688754, 11544329612485981, 310964453836198311, 8845303172513781271
Offset: 0

Views

Author

Keywords

Comments

Because the triangle A051031 is symmetric, a(n) is also the number of (2n-4)-regular graphs on 2n vertices.

References

  • R. C. Read and R. J. Wilson, An Atlas of Graphs, Oxford, 1998.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000421.
Row sums of A275744.
3-regular simple graphs: A002851 (connected), A165653 (disconnected), this sequence (not necessarily connected).
Regular graphs A005176 (any degree), A051031 (triangular array), chosen degrees: A000012 (k=0), A059841 (k=1), A008483 (k=2), this sequence (k=3), A033301 (k=4), A165626 (k=5), A165627 (k=6), A165628 (k=7), A180260 (k=8).
Not necessarily connected 3-regular simple graphs with girth *at least* g: this sequence (g=3), A185334 (g=4), A185335 (g=5), A185336 (g=6).
Not necessarily connected 3-regular simple graphs with girth *exactly* g: A185133 (g=3), A185134 (g=4), A185135 (g=5), A185136 (g=6).

Formula

a(n) = A002851(n) + A165653(n).
This sequence is the Euler transformation of A002851.

Extensions

More terms from Ronald C. Read.
Comment, formulas, and (most) crossrefs by Jason Kimberley, 2009 and 2012

A185325 Number of partitions of n into parts >= 5.

Original entry on oeis.org

1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 3, 3, 4, 5, 6, 7, 9, 10, 13, 15, 18, 21, 26, 30, 36, 42, 50, 58, 70, 80, 95, 110, 129, 150, 176, 202, 236, 272, 317, 364, 423, 484, 560, 643, 740, 847, 975, 1112, 1277, 1456, 1666, 1897, 2168, 2464, 2809, 3189, 3627, 4112, 4673
Offset: 0

Views

Author

Jason Kimberley, Nov 11 2011

Keywords

Comments

a(n) is also the number of not necessarily connected 2-regular graphs on n-vertices with girth at least 5 (all such graphs are simple). The integer i corresponds to the i-cycle; addition of integers corresponds to disconnected union of cycles.
By removing a single part of size 5, an A026798 partition of n becomes an A185325 partition of n - 5. Hence this sequence is essentially the same as A026798.
a(n) = number of partitions of n+4 such that 4*(number of parts) is a part. - Clark Kimberling, Feb 27 2014

Crossrefs

2-regular simple graphs with girth at least 5: A185115 (connected), A185225 (disconnected), this sequence (not necessarily connected).
Not necessarily connected 2-regular graphs with girth at least g [partitions into parts >= g]: A026807 (triangle); chosen g: A000041 (g=1 -- multigraphs with loops allowed), A002865 (g=2 -- multigraphs with loops forbidden), A008483 (g=3), A008484 (g=4), this sequence (g=5), A185326 (g=6), A185327 (g=7), A185328 (g=8), A185329 (g=9).
Not necessarily connected 2-regular graphs with girth exactly g [partitions with smallest part g]: A026794 (triangle); chosen g: A002865 (g=2), A026796 (g=3), A026797 (g=4), A026798 (g=5), A026799 (g=6), A026800(g=7), A026801 (g=8), A026802 (g=9), A026803 (g=10).
Not necessarily connected k-regular simple graphs with girth at least 5: A185315 (any k), A185305 (triangle); specified degree k: this sequence (k=2), A185335 (k=3).

Programs

  • Magma
    p :=  func< n | n lt 0 select 0 else NumberOfPartitions(n) >;
    A185325 := func;
    [A185325(n):n in[0..60]];
    
  • Magma
    R:=PowerSeriesRing(Integers(), 70); Coefficients(R!( 1/(&*[1-x^(m+5): m in [0..80]]) )); // G. C. Greubel, Nov 03 2019
    
  • Maple
    seq(coeff(series(1/mul(1-x^(m+5), m = 0..80), x, n+1), x, n), n = 0..70); # G. C. Greubel, Nov 03 2019
  • Mathematica
    Drop[Table[Count[IntegerPartitions[n], p_ /; MemberQ[p, 4*Length[p]]], {n, 40}], 3]  (* Clark Kimberling, Feb 27 2014 *)
    CoefficientList[Series[1/QPochhammer[x^5, x], {x, 0, 70}], x] (* G. C. Greubel, Nov 03 2019 *)
  • PARI
    my(x='x+O('x^70)); Vec(1/prod(m=0,80, 1-x^(m+5))) \\ G. C. Greubel, Nov 03 2019
    
  • Sage
    def A185325_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( 1/product((1-x^(m+5)) for m in (0..80)) ).list()
    A185325_list(70) # G. C. Greubel, Nov 03 2019

Formula

G.f.: Product_{m>=5} 1/(1-x^m).
Given by p(n) -p(n-1) -p(n-2) +2*p(n-5) -p(n-8) -p(n-9) +p(n-10), where p(n) = A000041(n). - Shanzhen Gao, Oct 28 2010 [sign of 10 corrected from + to -, and moved from A026798 to this sequence by Jason Kimberley].
This sequence is the Euler transformation of A185115.
a(n) ~ exp(Pi*sqrt(2*n/3)) * Pi^4 / (6*sqrt(3)*n^3). - Vaclav Kotesovec, Jun 02 2018
G.f.: exp(Sum_{k>=1} x^(5*k)/(k*(1 - x^k))). - Ilya Gutkovskiy, Aug 21 2018
G.f.: 1 + Sum_{n >= 1} x^(n+4)/Product_{k = 0..n-1} (1 - x^(k+5)). - Peter Bala, Dec 01 2024

A014372 Number of trivalent connected simple graphs with 2n nodes and girth at least 5.

Original entry on oeis.org

1, 0, 0, 0, 0, 1, 2, 9, 49, 455, 5783, 90938, 1620479, 31478584, 656783890, 14621871204, 345975648562
Offset: 0

Views

Author

Keywords

Comments

The null graph on 0 vertices is vacuously connected and 3-regular; since it is acyclic, it has infinite girth. - Jason Kimberley, Jan 29 2011
Brendan McKay has observed that a(13) = 31478584 is output by genreg, minibaum, and snarkhunter, but Meringer's table currently has a(13) = 31478582. - Jason Kimberley, May 17 2017

References

  • CRC Handbook of Combinatorial Designs, 1996, p. 647.

Crossrefs

Contribution from Jason Kimberley, 2010, 2011, and 2012: (Start)
3-regular simple graphs with girth at least 5: this sequence (connected), A185235 (disconnected), A185335 (not necessarily connected).
Connected k-regular simple graphs with girth at least 5: A186725 (all k), A186715 (triangle); A185115 (k=2), this sequence (k=3), A058343 (k=4), A205295 (g=5).
Connected 3-regular simple graphs with girth at least g: A185131 (triangle); A002851 (g=3), A014371 (g=4), this sequence (g=5), A014374 (g=6), A014375 (g=7), A014376 (g=8).
Connected 3-regular simple graphs with girth exactly g: A198303 (triangle); A006923 (g=3), A006924 (g=4), A006925 (g=5), A006926 (g=6), A006927 (g=7). (End)

Extensions

Terms a(15) and a(16) appended, from running Meringer's GENREG for 28.7 and 715.2 processor days at U. Ncle., by Jason Kimberley, Jun 28 2010.

A185334 Number of not necessarily connected 3-regular simple graphs on 2n vertices with girth at least 4.

Original entry on oeis.org

1, 0, 0, 1, 2, 6, 23, 112, 801, 7840, 97723, 1436873, 23791155, 432878091, 8544173926, 181519645163, 4127569521160
Offset: 0

Views

Author

Jason Kimberley, Feb 15 2011

Keywords

Comments

The null graph on 0 vertices is vacuously 3-regular; since it is acyclic, it has infinite girth.

Crossrefs

3-regular simple graphs with girth at least 4: A014371 (connected), A185234 (disconnected), this sequence (not necessarily connected).
Not necessarily connected k-regular simple graphs with girth at least 4: A185314 (any k), A185304 (triangle); specified degree k: A008484 (k=2), this sequence (k=3), A185344 (k=4), A185354 (k=5), A185364 (k=6).
Not necessarily connected 3-regular simple graphs with girth *at least* g: A005638 (g=3), this sequence (g=4), A185335 (g=5), A185336 (g=6).
Not necessarily connected 3-regular simple graphs with girth *exactly* g: A185133 (g=3), A185134 (g=4), A185135 (g=5), A185136 (g=6).

Programs

Formula

Euler transformation of A014371.

A185134 Number of, not necessarily connected, 3-regular simple graphs on 2n vertices with girth exactly 4.

Original entry on oeis.org

0, 0, 0, 1, 2, 5, 21, 103, 752, 7385, 91939, 1345933, 22170664, 401399440, 7887389438, 166897766824, 3781593764772
Offset: 0

Views

Author

Jason Kimberley, Mar 21 2012

Keywords

Crossrefs

Not necessarily connected k-regular simple graphs girth exactly 4: A198314 (any k), A185644 (triangle); fixed k: A026797 (k=2), this sequence (k=3), A185144 (k=4).
Not necessarily connected 3-regular simple graphs on 2n vertices with girth exactly g: A185130 (triangle); fixed g: A185133 (g=3), this sequence (g=4), A185135 (g=5), A185136 (g=6).

Formula

a(n) = A185334(n) - A185335(n).
a(n) = A006924(n) + A185034(n).

A185315 Number of, not necessarily connected, regular simple graphs on n vertices with girth at least 5.

Original entry on oeis.org

1, 1, 2, 1, 2, 2, 3, 2, 3, 2, 5, 3, 7, 4, 15, 6, 57, 8, 466, 12, 5801, 24, 91091, 3939, 1744378, 4132022, 163639295, 4018022192, 119026596500
Offset: 0

Views

Author

Jason Kimberley, Dec 12 2012

Keywords

Crossrefs

Not necessarily connected k-regular simple graphs with girth at least 5: this sequence (any k), A185305 (triangle); specified degree k: A185325 (k=2), A185335 (k=3).
Not necessarily connected regular simple graphs with girth at least g: A005176 (g=3), A185314 (g=4), this sequence (g=5), A185316 (g=6), A185317 (g=7), A185318 (g=8), A185319 (g=9).

Formula

a(n) = A186725(n) + A185215(n).

A185135 Number of not necessarily connected 3-regular simple graphs on 2n vertices with girth exactly 5.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 2, 8, 48, 450, 5752, 90555, 1612917, 31297424, 652159986, 14499787794, 342646826428
Offset: 0

Views

Author

Jason Kimberley, Mar 21 2012

Keywords

Crossrefs

Not necessarily connected 3-regular simple graphs on 2n vertices with girth exactly g: A185130 (triangle); fixed g: A185133 (g=3), A185134 (g=4), this sequence (g=5), A185136 (g=6).

Formula

a(n) = A185335(n) - A185336(n).
a(n) = A006925(n) + A185035(n).

A185305 Triangular array E(n,k) counting not necessarily connected k-regular simple graphs on n vertices with girth at least 5.

Original entry on oeis.org

1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 2, 1, 1, 0, 2, 0, 1, 1, 3, 2, 1, 0, 3, 0, 1, 1, 4, 9, 1, 0, 5, 0, 1, 1, 6, 49, 1, 0, 7, 0, 1, 1, 9, 455, 1, 0, 10, 0, 1, 1, 1, 13, 5784, 2, 1, 0, 15, 0, 8, 1, 1, 18, 90940, 131, 1, 0, 21, 0, 3917, 1, 1, 26, 1620491, 123859
Offset: 1

Views

Author

Jason Kimberley, Feb 21 2013

Keywords

Comments

Row sums give A185315.

Examples

			01: 1;
02: 1, 1;
03: 1, 0;
04: 1, 1;
05: 1, 0, 1;
06: 1, 1, 1;
07: 1, 0, 1;
08: 1, 1, 1;
09: 1, 0, 1;
10: 1, 1, 2, 1;
11: 1, 0, 2, 0;
12: 1, 1, 3, 2;
13: 1, 0, 3, 0;
14: 1, 1, 4, 9;
15: 1, 0, 5, 0;
16: 1, 1, 6, 49;
17: 1, 0, 7, 0;
18: 1, 1, 9, 455;
19: 1, 0, 10, 0, 1;
20: 1, 1, 13, 5784, 2;
21: 1, 0, 15, 0, 8;
22: 1, 1, 18, 90940, 131;
23: 1, 0, 21, 0, 3917;
24: 1, 1, 26, 1620491, 123859;
25: 1, 0, 30, 0, 4131991;
26: 1, 1, 36, 31478649, 132160608;
27: 1, 0, 42, 0, 4018022149;
28: 1, 1, 50, 656784488, 118369811960;
		

Crossrefs

Not necessarily connected k-regular simple graphs with girth at least 5: A185315 (any k), this sequence (triangle); specified degree k: A185325 (k=2), A185335 (k=3).

Formula

E(n,k) = A186715(n,k) + A185205(n,k).

A185336 Number of not necessarily connected 3-regular simple graphs on 2n vertices with girth at least 6.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 1, 1, 5, 32, 385, 7574, 181227, 4624502, 122090545, 3328929960, 93990692632, 2754222605808
Offset: 0

Views

Author

Jason Kimberley, Jan 28 2012

Keywords

Comments

The null graph on 0 vertices is vacuously 3-regular; since it is acyclic, it has infinite girth.

Crossrefs

3-regular simple graphs with girth at least 6: A014374 (connected), A185236 (disconnected), this sequence (not necessarily connected).
Not necessarily connected k-regular simple graphs with girth at least 6: A185326 (k=2), this sequence (k=3).
Not necessarily connected 3-regular simple graphs with girth *at least* g: A005638 (g=3), A185334 (g=4), A185335 (g=5), this sequence (g=6).
Not necessarily connected 3-regular simple graphs with girth *exactly* g: A185133 (g=3), A185134 (g=4), A185135 (g=5), A185136 (g=6).

Programs

  • Mathematica
    A014374 = Cases[Import["https://oeis.org/A014374/b014374.txt", "Table"], {, }][[All, 2]];
    etr[f_] := Module[{b}, b[n_] := b[n] = If[n == 0, 1, Sum[Sum[d f[d], {d, Divisors[j]}] b[n - j], {j, 1, n}]/n]; b];
    a = etr[A014374[[# + 1]]&];
    a /@ Range[0, Length[A014374] - 1] (* Jean-François Alcover, Dec 04 2019 *)

Formula

Euler transformation of A014374.

Extensions

a(18) from A014374 from Jean-François Alcover, Dec 04 2019
Showing 1-9 of 9 results.