cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A005638 Number of unlabeled trivalent (or cubic) graphs with 2n nodes.

Original entry on oeis.org

1, 0, 1, 2, 6, 21, 94, 540, 4207, 42110, 516344, 7373924, 118573592, 2103205738, 40634185402, 847871397424, 18987149095005, 454032821688754, 11544329612485981, 310964453836198311, 8845303172513781271
Offset: 0

Views

Author

Keywords

Comments

Because the triangle A051031 is symmetric, a(n) is also the number of (2n-4)-regular graphs on 2n vertices.

References

  • R. C. Read and R. J. Wilson, An Atlas of Graphs, Oxford, 1998.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000421.
Row sums of A275744.
3-regular simple graphs: A002851 (connected), A165653 (disconnected), this sequence (not necessarily connected).
Regular graphs A005176 (any degree), A051031 (triangular array), chosen degrees: A000012 (k=0), A059841 (k=1), A008483 (k=2), this sequence (k=3), A033301 (k=4), A165626 (k=5), A165627 (k=6), A165628 (k=7), A180260 (k=8).
Not necessarily connected 3-regular simple graphs with girth *at least* g: this sequence (g=3), A185334 (g=4), A185335 (g=5), A185336 (g=6).
Not necessarily connected 3-regular simple graphs with girth *exactly* g: A185133 (g=3), A185134 (g=4), A185135 (g=5), A185136 (g=6).

Formula

a(n) = A002851(n) + A165653(n).
This sequence is the Euler transformation of A002851.

Extensions

More terms from Ronald C. Read.
Comment, formulas, and (most) crossrefs by Jason Kimberley, 2009 and 2012

A185133 Number of not necessarily connected 3-regular simple graphs on 2n vertices with girth exactly 3.

Original entry on oeis.org

0, 0, 1, 1, 4, 15, 71, 428, 3406, 34270, 418621, 5937051, 94782437, 1670327647, 32090011476, 666351752261, 14859579573845
Offset: 0

Views

Author

Jason Kimberley, Mar 21 2012

Keywords

Crossrefs

Not necessarily connected k-regular simple graphs girth exactly 3: A198313 (any k), A185643 (triangle); fixed k: A026796 (k=2), this sequence (k=3), A185143 (k=4), A185153 (k=5), A185163 (k=6).
Not necessarily connected 3-regular simple graphs on 2n vertices with girth exactly g: A185130 (triangle); fixed g: this sequence (g=3), A185134 (g=4), A185135 (g=5), A185136 (g=6).

Formula

a(n) = A005638(n) - A185334(n).
a(n) = A006923(n) + A185033(n).

A185334 Number of not necessarily connected 3-regular simple graphs on 2n vertices with girth at least 4.

Original entry on oeis.org

1, 0, 0, 1, 2, 6, 23, 112, 801, 7840, 97723, 1436873, 23791155, 432878091, 8544173926, 181519645163, 4127569521160
Offset: 0

Views

Author

Jason Kimberley, Feb 15 2011

Keywords

Comments

The null graph on 0 vertices is vacuously 3-regular; since it is acyclic, it has infinite girth.

Crossrefs

3-regular simple graphs with girth at least 4: A014371 (connected), A185234 (disconnected), this sequence (not necessarily connected).
Not necessarily connected k-regular simple graphs with girth at least 4: A185314 (any k), A185304 (triangle); specified degree k: A008484 (k=2), this sequence (k=3), A185344 (k=4), A185354 (k=5), A185364 (k=6).
Not necessarily connected 3-regular simple graphs with girth *at least* g: A005638 (g=3), this sequence (g=4), A185335 (g=5), A185336 (g=6).
Not necessarily connected 3-regular simple graphs with girth *exactly* g: A185133 (g=3), A185134 (g=4), A185135 (g=5), A185136 (g=6).

Programs

Formula

Euler transformation of A014371.

A185134 Number of, not necessarily connected, 3-regular simple graphs on 2n vertices with girth exactly 4.

Original entry on oeis.org

0, 0, 0, 1, 2, 5, 21, 103, 752, 7385, 91939, 1345933, 22170664, 401399440, 7887389438, 166897766824, 3781593764772
Offset: 0

Views

Author

Jason Kimberley, Mar 21 2012

Keywords

Crossrefs

Not necessarily connected k-regular simple graphs girth exactly 4: A198314 (any k), A185644 (triangle); fixed k: A026797 (k=2), this sequence (k=3), A185144 (k=4).
Not necessarily connected 3-regular simple graphs on 2n vertices with girth exactly g: A185130 (triangle); fixed g: A185133 (g=3), this sequence (g=4), A185135 (g=5), A185136 (g=6).

Formula

a(n) = A185334(n) - A185335(n).
a(n) = A006924(n) + A185034(n).

A185335 Number of not necessarily connected 3-regular simple graphs on 2n vertices with girth at least 5.

Original entry on oeis.org

1, 0, 0, 0, 0, 1, 2, 9, 49, 455, 5784, 90940, 1620491, 31478651, 656784488, 14621878339, 345975756388
Offset: 0

Views

Author

Jason Kimberley, Jan 28 2011

Keywords

Crossrefs

3-regular simple graphs with girth at least 5: A014372 (connected), A185235 (disconnected), this sequence (not necessarily connected).
Not necessarily connected 3-regular simple graphs with girth *at least* g: A005638 (g=3), A185334 (g=4), this sequence (g=5), A185336 (g=6).
Not necessarily connected 3-regular simple graphs with girth *exactly* g: A185133 (g=3), A185134 (g=4), A185135 (g=5), A185136 (g=6).
Not necessarily connected k-regular simple graphs with girth at least 5: A185315 (any k), A185305 (triangle); specified degree k: A185325 (k=2), this sequence (k=3).

Programs

Formula

This sequence is the Euler transformation of A014372.

A185136 Number of not necessarily connected 3-regular simple graphs on 2n vertices with girth exactly 6.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 1, 1, 5, 32, 385, 7573, 181224, 4624481, 122089999, 3328899592, 93988909792
Offset: 0

Views

Author

Jason Kimberley, Mar 21 2012

Keywords

Crossrefs

Not necessarily connected 3-regular simple graphs on 2n vertices with girth exactly g: A185130 (triangle); fixed g: A185133 (g=3), A185134 (g=4), A185135 (g=5), this sequence (g=6).

Formula

a(n) = A006926(n) + A185036(n).

A185130 Irregular triangle E(n,g) counting not necessarily connected 3-regular simple graphs on 2n vertices with girth exactly g.

Original entry on oeis.org

1, 1, 1, 4, 2, 15, 5, 1, 71, 21, 2, 428, 103, 8, 1, 3406, 752, 48, 1, 34270, 7385, 450, 5, 418621, 91939, 5752, 32, 5937051, 1345933, 90555, 385, 94782437, 22170664, 1612917, 7573, 1, 1670327647, 401399440, 31297424, 181224, 3, 32090011476, 7887389438
Offset: 2

Views

Author

Jason Kimberley, Dec 26 2012

Keywords

Comments

The first column is for girth exactly 3. The column for girth exactly g begins when 2n reaches A000066(g).

Examples

			1;
1, 1;
4, 2;
15, 5, 1;
71, 21, 2;
428, 103, 8, 1;
3406, 752, 48, 1;
34270, 7385, 450, 5;
418621, 91939, 5752, 32;
5937051, 1345933, 90555, 385;
94782437, 22170664, 1612917, 7573, 1;
1670327647, 401399440, 31297424, 181224, 3;
32090011476, 7887389438, 652159986, 4624481, 21;
666351752261, 166897766824, 14499787794, 122089999, 545, 1;
14859579573845, 3781593764772, 342646826428, 3328899592, 30368, 0;
		

Crossrefs

Initial columns of this triangle: A185133 (g=3), A185134 (g=4), A185135 (g=5), A185136 (g=6).

Formula

The n-th row is the sequence of differences of the n-th row of A185330:
E(n,g) = A185330(n,g) - A185330(n,g+1), once we have appended 0 to each row of A185330.
Hence the sum of the n-th row is A185330(n,3) = A005638(n).

A185336 Number of not necessarily connected 3-regular simple graphs on 2n vertices with girth at least 6.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 1, 1, 5, 32, 385, 7574, 181227, 4624502, 122090545, 3328929960, 93990692632, 2754222605808
Offset: 0

Views

Author

Jason Kimberley, Jan 28 2012

Keywords

Comments

The null graph on 0 vertices is vacuously 3-regular; since it is acyclic, it has infinite girth.

Crossrefs

3-regular simple graphs with girth at least 6: A014374 (connected), A185236 (disconnected), this sequence (not necessarily connected).
Not necessarily connected k-regular simple graphs with girth at least 6: A185326 (k=2), this sequence (k=3).
Not necessarily connected 3-regular simple graphs with girth *at least* g: A005638 (g=3), A185334 (g=4), A185335 (g=5), this sequence (g=6).
Not necessarily connected 3-regular simple graphs with girth *exactly* g: A185133 (g=3), A185134 (g=4), A185135 (g=5), A185136 (g=6).

Programs

  • Mathematica
    A014374 = Cases[Import["https://oeis.org/A014374/b014374.txt", "Table"], {, }][[All, 2]];
    etr[f_] := Module[{b}, b[n_] := b[n] = If[n == 0, 1, Sum[Sum[d f[d], {d, Divisors[j]}] b[n - j], {j, 1, n}]/n]; b];
    a = etr[A014374[[# + 1]]&];
    a /@ Range[0, Length[A014374] - 1] (* Jean-François Alcover, Dec 04 2019 *)

Formula

Euler transformation of A014374.

Extensions

a(18) from A014374 from Jean-François Alcover, Dec 04 2019
Showing 1-8 of 8 results.