A005638
Number of unlabeled trivalent (or cubic) graphs with 2n nodes.
Original entry on oeis.org
1, 0, 1, 2, 6, 21, 94, 540, 4207, 42110, 516344, 7373924, 118573592, 2103205738, 40634185402, 847871397424, 18987149095005, 454032821688754, 11544329612485981, 310964453836198311, 8845303172513781271
Offset: 0
- R. C. Read and R. J. Wilson, An Atlas of Graphs, Oxford, 1998.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- G. Brinkmann, Fast generation of cubic graphs, Journal of Graph Theory, 23(2):139-149, 1996.
- Jason Kimberley, Not-necessarily connected regular graphs
- Jason Kimberley, Index of sequences counting not necessarily connected k-regular simple graphs with girth at least g
- R. W. Robinson, Cubic graphs (notes)
- Robinson, R. W.; Wormald, N. C., Numbers of cubic graphs, J. Graph Theory 7 (1983), no. 4, 463-467.
- Peter Steinbach, Field Guide to Simple Graphs, Volume 1, Part 17 (For Volumes 1, 2, 3, 4 of this book see A000088, A008406, A000055, A000664, respectively.)
- Eric Weisstein's World of Mathematics, Cubic Graph
- Gal Weitz, Lirandë Pira, Chris Ferrie, and Joshua Combes, Sub-universal variational circuits for combinatorial optimization problems, arXiv:2308.14981 [quant-ph], 2023.
3-regular simple graphs:
A002851 (connected),
A165653 (disconnected), this sequence (not necessarily connected).
Regular graphs
A005176 (any degree),
A051031 (triangular array), chosen degrees:
A000012 (k=0),
A059841 (k=1),
A008483 (k=2), this sequence (k=3),
A033301 (k=4),
A165626 (k=5),
A165627 (k=6),
A165628 (k=7),
A180260 (k=8).
Not necessarily connected 3-regular simple graphs with girth *at least* g: this sequence (g=3),
A185334 (g=4),
A185335 (g=5),
A185336 (g=6).
More terms from Ronald C. Read.
A185133
Number of not necessarily connected 3-regular simple graphs on 2n vertices with girth exactly 3.
Original entry on oeis.org
0, 0, 1, 1, 4, 15, 71, 428, 3406, 34270, 418621, 5937051, 94782437, 1670327647, 32090011476, 666351752261, 14859579573845
Offset: 0
Not necessarily connected 3-regular simple graphs on 2n vertices with girth exactly g:
A185130 (triangle); fixed g: this sequence (g=3),
A185134 (g=4),
A185135 (g=5),
A185136 (g=6).
A185334
Number of not necessarily connected 3-regular simple graphs on 2n vertices with girth at least 4.
Original entry on oeis.org
1, 0, 0, 1, 2, 6, 23, 112, 801, 7840, 97723, 1436873, 23791155, 432878091, 8544173926, 181519645163, 4127569521160
Offset: 0
3-regular simple graphs with girth at least 4:
A014371 (connected),
A185234 (disconnected), this sequence (not necessarily connected).
Not necessarily connected k-regular simple graphs with girth at least 4:
A185314 (any k),
A185304 (triangle); specified degree k:
A008484 (k=2), this sequence (k=3),
A185344 (k=4),
A185354 (k=5),
A185364 (k=6).
Not necessarily connected 3-regular simple graphs with girth *at least* g:
A005638 (g=3), this sequence (g=4),
A185335 (g=5),
A185336 (g=6).
A185134
Number of, not necessarily connected, 3-regular simple graphs on 2n vertices with girth exactly 4.
Original entry on oeis.org
0, 0, 0, 1, 2, 5, 21, 103, 752, 7385, 91939, 1345933, 22170664, 401399440, 7887389438, 166897766824, 3781593764772
Offset: 0
Not necessarily connected k-regular simple graphs girth exactly 4:
A198314 (any k),
A185644 (triangle); fixed k:
A026797 (k=2), this sequence (k=3),
A185144 (k=4).
Not necessarily connected 3-regular simple graphs on 2n vertices with girth exactly g:
A185130 (triangle); fixed g:
A185133 (g=3), this sequence (g=4),
A185135 (g=5),
A185136 (g=6).
A185335
Number of not necessarily connected 3-regular simple graphs on 2n vertices with girth at least 5.
Original entry on oeis.org
1, 0, 0, 0, 0, 1, 2, 9, 49, 455, 5784, 90940, 1620491, 31478651, 656784488, 14621878339, 345975756388
Offset: 0
3-regular simple graphs with girth at least 5:
A014372 (connected),
A185235 (disconnected), this sequence (not necessarily connected).
Not necessarily connected 3-regular simple graphs with girth *at least* g:
A005638 (g=3),
A185334 (g=4), this sequence (g=5),
A185336 (g=6).
Not necessarily connected k-regular simple graphs with girth at least 5:
A185315 (any k),
A185305 (triangle); specified degree k:
A185325 (k=2), this sequence (k=3).
A185136
Number of not necessarily connected 3-regular simple graphs on 2n vertices with girth exactly 6.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 0, 1, 1, 5, 32, 385, 7573, 181224, 4624481, 122089999, 3328899592, 93988909792
Offset: 0
Not necessarily connected 3-regular simple graphs on 2n vertices with girth exactly g:
A185130 (triangle); fixed g:
A185133 (g=3),
A185134 (g=4),
A185135 (g=5), this sequence (g=6).
A185130
Irregular triangle E(n,g) counting not necessarily connected 3-regular simple graphs on 2n vertices with girth exactly g.
Original entry on oeis.org
1, 1, 1, 4, 2, 15, 5, 1, 71, 21, 2, 428, 103, 8, 1, 3406, 752, 48, 1, 34270, 7385, 450, 5, 418621, 91939, 5752, 32, 5937051, 1345933, 90555, 385, 94782437, 22170664, 1612917, 7573, 1, 1670327647, 401399440, 31297424, 181224, 3, 32090011476, 7887389438
Offset: 2
1;
1, 1;
4, 2;
15, 5, 1;
71, 21, 2;
428, 103, 8, 1;
3406, 752, 48, 1;
34270, 7385, 450, 5;
418621, 91939, 5752, 32;
5937051, 1345933, 90555, 385;
94782437, 22170664, 1612917, 7573, 1;
1670327647, 401399440, 31297424, 181224, 3;
32090011476, 7887389438, 652159986, 4624481, 21;
666351752261, 166897766824, 14499787794, 122089999, 545, 1;
14859579573845, 3781593764772, 342646826428, 3328899592, 30368, 0;
A185336
Number of not necessarily connected 3-regular simple graphs on 2n vertices with girth at least 6.
Original entry on oeis.org
1, 0, 0, 0, 0, 0, 0, 1, 1, 5, 32, 385, 7574, 181227, 4624502, 122090545, 3328929960, 93990692632, 2754222605808
Offset: 0
3-regular simple graphs with girth at least 6:
A014374 (connected),
A185236 (disconnected), this sequence (not necessarily connected).
Not necessarily connected k-regular simple graphs with girth at least 6:
A185326 (k=2), this sequence (k=3).
Not necessarily connected 3-regular simple graphs with girth *at least* g:
A005638 (g=3),
A185334 (g=4),
A185335 (g=5), this sequence (g=6).
-
A014374 = Cases[Import["https://oeis.org/A014374/b014374.txt", "Table"], {, }][[All, 2]];
etr[f_] := Module[{b}, b[n_] := b[n] = If[n == 0, 1, Sum[Sum[d f[d], {d, Divisors[j]}] b[n - j], {j, 1, n}]/n]; b];
a = etr[A014374[[# + 1]]&];
a /@ Range[0, Length[A014374] - 1] (* Jean-François Alcover, Dec 04 2019 *)
Showing 1-8 of 8 results.
Comments