cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A185670 Number of pairs (x,y) with 1 <= x < y <= n with at least one common factor.

Original entry on oeis.org

0, 0, 0, 1, 1, 4, 4, 7, 9, 14, 14, 21, 21, 28, 34, 41, 41, 52, 52, 63, 71, 82, 82, 97, 101, 114, 122, 137, 137, 158, 158, 173, 185, 202, 212, 235, 235, 254, 268, 291, 291, 320, 320, 343, 363, 386, 386, 417, 423, 452, 470, 497, 497, 532, 546, 577, 597, 626, 626, 669, 669, 700, 726, 757, 773, 818, 818, 853, 877, 922, 922, 969, 969, 1006, 1040
Offset: 1

Views

Author

Olivier Gérard, Feb 09 2011

Keywords

Examples

			For n=9, the a(9)=9 pairs are {(2,4),(2,6),(2,8),(3,6),(3,9),(4,6),(4,8),(6,8),(6,9)}.
		

Crossrefs

Programs

  • Haskell
    a185670 n = length [(x,y) | x <- [1..n-1], y <- [x+1..n], gcd x y > 1]
    -- Reinhard Zumkeller, Mar 02 2012
    
  • Maple
    with(numtheory): A185670:=n->n*(n-1)/2 + 1 - add( phi(i), i=1..n): seq(A185670(n), n=1..100); # Wesley Ivan Hurt, Jan 30 2017
  • Mathematica
    1 + Accumulate[ Table[n - EulerPhi[n] - 1, {n, 1, 75}]] (* Jean-François Alcover, Jan 04 2013 *)
  • PARI
    a185670(n) = sum(i=2, n, sum(j=2, i-1, gcd(i,j)>1)) \\ Hugo Pfoertner, Sep 04 2024
  • Python
    from functools import lru_cache
    @lru_cache(maxsize=None)
    def A185670(n): # based on second formula in A018805
        if n == 0:
            return 0
        c, j = 2, 2
        k1 = n//j
        while k1 > 1:
            j2 = n//k1 + 1
            c += (j2-j)*(k1*(k1-1)+1-2*A185670(k1))
            j, k1 = j2, n//j2
        return (c-j)//2 # Chai Wah Wu, Mar 24 2021
    

Formula

a(p) = a(p-1) when p is prime.
a(n)-a(n-1) = A016035(n).
a(n) = n*(n-1)/2 + 1 - Sum_{i=1..n} phi(i).
a(n) = A100613(n) - A063985(n). - Reinhard Zumkeller, Jan 21 2013

Extensions

Definition clarified by Reinhard Zumkeller, Mar 02 2012