A185670 Number of pairs (x,y) with 1 <= x < y <= n with at least one common factor.
0, 0, 0, 1, 1, 4, 4, 7, 9, 14, 14, 21, 21, 28, 34, 41, 41, 52, 52, 63, 71, 82, 82, 97, 101, 114, 122, 137, 137, 158, 158, 173, 185, 202, 212, 235, 235, 254, 268, 291, 291, 320, 320, 343, 363, 386, 386, 417, 423, 452, 470, 497, 497, 532, 546, 577, 597, 626, 626, 669, 669, 700, 726, 757, 773, 818, 818, 853, 877, 922, 922, 969, 969, 1006, 1040
Offset: 1
Examples
For n=9, the a(9)=9 pairs are {(2,4),(2,6),(2,8),(3,6),(3,9),(4,6),(4,8),(6,8),(6,9)}.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..1000
- Oliver Knill, Some experiments in number theory, arXiv preprint arXiv:1606.05971 [math.NT], 2016.
Programs
-
Haskell
a185670 n = length [(x,y) | x <- [1..n-1], y <- [x+1..n], gcd x y > 1] -- Reinhard Zumkeller, Mar 02 2012
-
Maple
with(numtheory): A185670:=n->n*(n-1)/2 + 1 - add( phi(i), i=1..n): seq(A185670(n), n=1..100); # Wesley Ivan Hurt, Jan 30 2017
-
Mathematica
1 + Accumulate[ Table[n - EulerPhi[n] - 1, {n, 1, 75}]] (* Jean-François Alcover, Jan 04 2013 *)
-
PARI
a185670(n) = sum(i=2, n, sum(j=2, i-1, gcd(i,j)>1)) \\ Hugo Pfoertner, Sep 04 2024
-
Python
from functools import lru_cache @lru_cache(maxsize=None) def A185670(n): # based on second formula in A018805 if n == 0: return 0 c, j = 2, 2 k1 = n//j while k1 > 1: j2 = n//k1 + 1 c += (j2-j)*(k1*(k1-1)+1-2*A185670(k1)) j, k1 = j2, n//j2 return (c-j)//2 # Chai Wah Wu, Mar 24 2021
Formula
a(p) = a(p-1) when p is prime.
a(n)-a(n-1) = A016035(n).
a(n) = n*(n-1)/2 + 1 - Sum_{i=1..n} phi(i).
Extensions
Definition clarified by Reinhard Zumkeller, Mar 02 2012