A186074 Numbers k such that k = Sum_{i=x..y} i and, in decimal, k is the concatenation of x and y.
15, 27, 429, 1353, 1863, 3388, 3591, 7119, 78403, 133533, 178623, 2282148, 2732353, 3882813, 7103835, 13335333, 17016076, 17786223, 27377889, 32738728, 35639163, 308725039, 347826603, 1248851513, 1333353333, 1420855168, 1777862223, 3146385338, 3699393633
Offset: 1
Examples
429 = 4 + 5 + 6 + ... + 28 + 29. 7119 = 7 + 8 + 9 + ... + 118 + 119. 3882813 = 388 + 389 + ... + 2812 + 2813.
Links
- Jinyuan Wang, Table of n, a(n) for n = 1..18738 (first 142 terms from David A. Corneth)
- Diophante, A1945 - Concaténations en tous genres (in French).
- Richard Hoshino, Astonishing Pairs of Numbers, Crux Mathematicorum with Mathematical Mayhem 27:1 (2001), pp. 39-44.
Programs
-
Maple
# See "Astonishing Pairs of Numbers" article referenced above.
-
PARI
do(s, t, k) = if(10^(k-1) < (s-t+1)/2 && (s-t+1)/2 < 10^k, (1-10^k+s)*(1+10^k-t)/2); lista(nn) = {my(m, v=List()); for(k = 1, nn, fordiv(50^k - 5^k, s, t = (100^k-10^k)/s; if(m=do(s, t, k), listput(v, m)); if(m=do(2^k*s, t/2^k, k), listput(v, m)))); vecsort(Vec(v)); } \\ Jinyuan Wang, Aug 29 2019
Formula
Extensions
a(22)-a(29) from Matthew Goers, Apr 11 2013
Comments