cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A097166 Expansion of g.f. (1+2*x)/((1-x)*(1-10*x)).

Original entry on oeis.org

1, 13, 133, 1333, 13333, 133333, 1333333, 13333333, 133333333, 1333333333, 13333333333, 133333333333, 1333333333333, 13333333333333, 133333333333333, 1333333333333333, 13333333333333333, 133333333333333333, 1333333333333333333, 13333333333333333333, 133333333333333333333
Offset: 0

Views

Author

Paul Barry, Jul 30 2004

Keywords

Comments

Partial sums of (1+2*x)/(1-10*x) = {1, 12, 120, 1200, ...}.
Second binomial transform of A082365.
These terms are the x's of A070152 and the corresponding y's are A350995 (see formula and examples). - Bernard Schott, Feb 15 2022

Examples

			a(0) = (4-1)/3 = 1 and Sum_{j=1..5} = 15.
a(1) = (40-1)/3 = 13 and Sum_{j=13..53} = 1353.
a(2) = (400-1)/3 = 133 and Sum_{j=133..533} = 133533.
		

Crossrefs

Cf. A056698 (index of primes), A082365, A097169, A309907 (squares of this).

Programs

  • Magma
    [(4*10^n-1)/3 : n in [0..20]]; // Vincenzo Librandi, Nov 01 2011
    
  • Maple
    a:= n-> parse(cat(1, 3$n)):
    seq(a(n), n=0..18);  # Alois P. Heinz, Aug 23 2019
  • Mathematica
    NestList[10#+3&,1,20] (* Harvey P. Dale, Jan 22 2014 *)
  • Python
    [(4*10**n-1)//3 for n in range(25)] # Gennady Eremin, Mar 04 2022

Formula

a(n) = (4*10^n - 1)/3.
a(n) = A097169(2*n).
a(n) = 10*a(n-1) + 3, n>0. a(n) = 11*a(n-1) - 10*a(n-2), n>1. - Vincenzo Librandi, Nov 01 2011
A350994(n) = Sum_{j=a(n)..A350995(n)} = a(n).A350995(n) where "." means concatenation. - Bernard Schott, Jan 28 2022
From Elmo R. Oliveira, Apr 29 2025: (Start)
E.g.f.: exp(x)*(4*exp(9*x) - 1)/3.
a(n) = A198970(n)/3. (End)

A070152 Take pairs (x,y) with Sum_{j = x..y} j = concatenation of x and y. Sort pairs on y then x. This sequence gives x of each pair.

Original entry on oeis.org

1, 2, 4, 13, 18, 33, 35, 7, 78, 133, 178, 228, 273, 388, 710, 1333, 1701, 1778, 2737, 3273, 3563, 3087, 3478, 12488, 13333, 14208, 17778, 31463, 36993, 5338, 7063, 9063, 12643, 15238, 17147, 22448, 23788, 27313, 29058, 34488, 36763, 38788, 43273, 50813, 53578
Offset: 1

Views

Author

Lekraj Beedassy, May 06 2002

Keywords

Comments

From Bernard Schott, Jan 26 2022: (Start)
Some subsequences, from Diophante and Crux Mathematicorum:
{(2*10^m-5)/15, m >= 1} = 1, 13, 133, 1333, ... = A097166.
{2*(4*10^m+5)/45, m >= 1} = 2, 18, 178, 1778, ...
{13*(26*100^m-125)/12375, m >= 2} = 273, 27313, 2731313, ... (End)

Examples

			1+...+5 = 15; 2+...+7 = 27; 4+...+29 = 429; 13+...+53 = 1353; 18+...+63 = 1863.
133+...+533 = 133533.
273+...+2353 = 2732353.
		

Crossrefs

Subsequence: A097166.

Extensions

More terms from David W. Wilson, Jun 04 2002
Name edited by Michel Marcus, Jan 29 2022

A070153 Take pairs (x,y) with Sum_{j = x..y} j = concatenation of x and y. Sort pairs on y then x. This sequence gives y of each pair.

Original entry on oeis.org

5, 7, 29, 53, 63, 88, 91, 119, 403, 533, 623, 2148, 2353, 2813, 3835, 5333, 6076, 6223, 7889, 8728, 9163, 25039, 26603, 51513, 53333, 55168, 62223, 85338, 93633, 103463, 119063, 134938, 159518, 175238, 185979, 213073, 219413, 235313, 242818, 264888
Offset: 1

Views

Author

Lekraj Beedassy, May 06 2002

Keywords

Comments

From Bernard Schott, Jan 26 2022: (Start)
Some subsequences, from Diophante and Crux Mathematicorum:
{(8*10^m-5)/15, m >= 1} = 5, 53, 533, 5333, ... (A350995).
{7*(4*10^m+5)/45, m >= 1} = 7, 63, 623, 6223, ...
{13*(224*100^m-125)/12375, m >= 2} = 2353, 235313, 23531313, ... (End)

Examples

			1+...+5 = 15; 2+...+7 = 27; 4+...+29 = 429; 13+...+53 = 1353; 18+...+63 = 1863.
133+...+533 = 133533.
178+...+623 = 178623.
		

Crossrefs

Cf. A350995 (is a subsequence).

Extensions

More terms from David W. Wilson, Jun 04 2002
Name edited by Michel Marcus, Jan 29 2022

A350995 a(n) = (16*10^n - 1)/3.

Original entry on oeis.org

5, 53, 533, 5333, 53333, 533333, 5333333, 53333333, 533333333, 5333333333, 53333333333, 533333333333, 5333333333333, 53333333333333, 533333333333333, 5333333333333333, 53333333333333333, 533333333333333333, 5333333333333333333, 53333333333333333333, 533333333333333333333, 5333333333333333333333
Offset: 0

Views

Author

Bernard Schott, Jan 28 2022

Keywords

Comments

These terms 'y' form a subsequence of A070153 and the corresponding terms 'x' are in A097166 (see 3rd formula and examples).

Examples

			a(0) = (16-1)/3 = 5 and Sum_{j=1..5} = 15.
a(1) = (160-1)/3 = 53 and Sum_{j=13..53} = 1353.
a(2) = (1600-1)/3 = 533 and Sum_{j=133..533} = 133533.
		

Crossrefs

Subsequence of A070153.

Programs

  • Maple
    Data := seq((16*10^n-1)/3,  n = 0..21);
  • Mathematica
    Table[(16*10^n - 1)/3, {n, 0, 21}] (* Amiram Eldar, Jan 29 2022 *)

Formula

a(n) = 10*a(n-1) + 3, n>0.
a(n) = 11*a(n-1) - 10*a(n-2), n>1.
A350994(n) = Sum_{j=A097166(n)..a(n)} = A097166(n).a(n) where "." means concatenation.
From Elmo R. Oliveira, May 02 2025: (Start)
G.f.: (5-2*x)/((1-x)*(1-10*x)).
E.g.f.: exp(x)*(16*exp(9*x) - 1)/3. (End)

A350994 a(n) = (40*100^n + 6*10^n - 1)/3.

Original entry on oeis.org

15, 1353, 133533, 13335333, 1333353333, 133333533333, 13333335333333, 1333333353333333, 133333333533333333, 13333333335333333333, 1333333333353333333333, 133333333333533333333333, 13333333333335333333333333, 1333333333333353333333333333, 133333333333333533333333333333
Offset: 0

Views

Author

Bernard Schott, Jan 28 2022

Keywords

Comments

Subsequence of A186074.
Terms of this sequence satisfy the identity proposed in 2nd formula because a(n) = Sum_{j=(4*10^n-1)/3..(16*10^n-1)/3} j = ((4*10^n-1)/3).((16*10^n-1)/3) where "." means concatenation (see examples).

Examples

			a(0) = (40+6-1)/3 = Sum_{j=1..5} j = 15.
a(1) = (4000+60-1)/3 = Sum_{j=13..53} j = 1353.
a(2) = (400000+600-1)/3 = Sum_{j=133..533} j = 133533.
		

Crossrefs

Programs

  • Maple
    Data := seq((40*100^n + 6*10^n - 1)/3,  n = 0..17);
  • Mathematica
    Table[(40*100^n + 6*10^n - 1)/3, {n, 0, 17}] (* Amiram Eldar, Jan 29 2022 *)
    LinearRecurrence[{111,-1110,1000},{15,1353,133533},20] (* Harvey P. Dale, Jun 16 2025 *)

Formula

a(n) = 111*a(n-1) - 1110*a(n-2) + 1000*a(n-3), n >= 3.
a(n) = Sum_{j=A097166(n)..A350995(n)} j = A097166(n).A350995(n) where "." means concatenation.
G.f.: (15 - 312*x)/((1 - x)*(1 - 10*x)*(1 - 100*x)). - Stefano Spezia, Jan 30 2022
a(n) = 2*A332167(n) + 1. - Hugo Pfoertner, Jan 30 2022
E.g.f.: exp(x)*(40*exp(99*x) + 6*exp(9*x) - 1)/3. - Elmo R. Oliveira, May 02 2025

A186076 Numbers m such that m = Sum_{i=x..y} i = (10^k)*y + x, where 0 <= x < y, 0 <= x < 10^k for some positive integers k.

Original entry on oeis.org

190, 204, 216, 19900, 20328, 21252, 21762, 23287, 23490, 1999000, 2002077, 2006118, 2077402, 2132532, 2177622, 199990000, 202272147, 202722352, 203872812, 207093834, 213325332, 217006075, 217776222, 227367888, 232728727, 235629162, 19999900000, 20001201612
Offset: 1

Views

Author

Matthew Goers, Feb 11 2011

Keywords

Comments

Numbers that are the sum from their more significant digits counted down to the following digits. The first is the 19th triangular number: 190 = 19 + 18 + 17 + ... + 1 + 0.
See A186074 for numbers that sum by counting upward.
An alternate definition: n = sum from x to y inclusive = A000217(y) - A000217(x-1), (A000217 are the triangular numbers) where the digits of n are the concatenation of y and x.
These are the positive integer solutions to the equation Sum_{i=x..y} i = (10^k)*y + x, where 0 <= x < y, 0 <= x < 10^k, k = 1,2,3...
The graph of the function is a hyperbola; the solutions are for positive x and y, where x does not "overlap" and add to y. The first 15 terms are all of the solutions for m = 1 to 3.
Note that terms A186074(4) and A186074(10) have trailing 0's, i.e. 19900 = Sum_{k=0..199} k and 1999000 = Sum_{k=0..1999} k. Strictly speaking, these do not meet the concatenation criterion. This pattern continues indefinitely: 199990000, 19999900000, etc. - Matthew Goers, Jun 03 2011
All terms form (10^k)*y + x, where y = (s+t-1)/2 + 10^k, x = (s-t-1)/2, s*t = 100^k - 10^k, 0 <= (s-t-1)/2 < 10^k, and gcd(s, t) is an odd number. - Jinyuan Wang, Sep 13 2019

Examples

			204 = 20 + 19 + 18 + ... + 5 + 4.
2002077 = 2002 + 2001 + ... + 78 + 77.
2006118 = 2006 + 2005 + ... + 119 + 118.
		

Crossrefs

Programs

  • PARI
    do(s, t, k) = if(s - t > 0 && (s-t-1)/2 < 10^k, (10^k-1+s)*(10^k+1+t)/2, 204);
    lista(nn) = {my(v=List()); for(k = 1, nn, fordiv(50^k - 5^k, s, t = (100^k-10^k)/s; listput(v, do(s, t, k)); listput(v, do(2^k*s, t/2^k, k)))); Set(v); } \\ Jinyuan Wang, Sep 13 2019

Extensions

Missing term a(4) = 19900 inserted by Matthew Goers, Jun 03 2011
a(16)-a(28) from Donovan Johnson, Aug 22 2012
Showing 1-6 of 6 results.