cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A246057 a(n) = (5*10^n - 2)/3.

Original entry on oeis.org

1, 16, 166, 1666, 16666, 166666, 1666666, 16666666, 166666666, 1666666666, 16666666666, 166666666666, 1666666666666, 16666666666666, 166666666666666, 1666666666666666, 16666666666666666, 166666666666666666, 1666666666666666666, 16666666666666666666, 166666666666666666666
Offset: 0

Views

Author

Vincenzo Librandi, Aug 13 2014

Keywords

Comments

a(k-1) = (10^k - 4)/6, together with b(k) = 3*a(k-1) + 2 = A093143(k) and c(k) = 2*a(k-1) + 1 = A002277(k) are k-digit numbers for k >= 1 satisfying the so-called curious cubic identity a(k-1)^3 + b(k)^3 + c(k)^3 = a(k)*10^(2*k) + b(k)*10^k + c(k) (concatenated a(k)b(k)c(k)). This k-family and the proof of the identity has been given in the introduction of the van der Poorten reference. Thanks go to S. Heinemeyer for bringing these identities to my attention. - Wolfdieter Lang, Feb 07 2017

Examples

			Curious cubic identities (see a comment and reference above): 1^3 + 5^3 + 3^3 = 153, 16^3 + 50^3 + 33^3 = 165033, 166^3 + 500^3 + 333^3 = 166500333, ... - _Wolfdieter Lang_, Feb 07 2017
		

Crossrefs

Cf. sequences with terms of the form 1k..k where the digit k is repeated n times: A000042 (k=1), A090843 (k=2), A097166 (k=3), A099914 (k=4), A099915 (k=5), this sequence (k=6), A246058 (k=7), A246059 (k=8), A067272 (k=9).

Programs

  • Magma
    [(5*10^n-2)/3: n in [0..20]];
    
  • Mathematica
    Table[(5 10^n - 2)/3, {n, 0, 20}]
  • PARI
    vector(50, n, (5*10^(n-1)-2)/3) \\ Derek Orr, Aug 13 2014

Formula

G.f.: (1 + 5*x)/((1 - x)*(1 - 10*x)).
a(n) = 11*a(n-1) - 10*a(n-2).
E.g.f.: exp(x)*(5*exp(9*x) - 2)/3. - Stefano Spezia, May 02 2025
a(n) = A323639(n+1)/2 = A086948(n+1)/12. - Elmo R. Oliveira, May 07 2025

A349194 a(n) is the product of the sum of the first i digits of n, as i goes from 1 to the total number of digits of n.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 16, 20, 24, 28, 32, 36, 40, 44, 48, 52, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 36, 42, 48, 54, 60, 66, 72, 78, 84, 90, 49, 56, 63, 70, 77
Offset: 1

Views

Author

Malo David, Nov 10 2021

Keywords

Comments

The only primes in the sequence are 2, 3, 5 and 7. - Bernard Schott, Nov 23 2021

Examples

			For n=256, a(256) = 2*(2+5)*(2+5+6) = 182.
		

Crossrefs

Cf. A055642, A284001 (binary analog), A349190 (fixed points).
Cf. A007953 (sum of digits), A059995 (floor(n/10)).
Cf. A349278 (similar, with the last digits).

Programs

  • Magma
    f:=func; [f(n):n in [1..100]]; // Marius A. Burtea, Nov 23 2021
  • Mathematica
    Table[Product[Sum[Part[IntegerDigits[n],j],{j,i}],{i,Length[IntegerDigits[n]]}],{n,74}] (* Stefano Spezia, Nov 10 2021 *)
  • PARI
    a(n) = my(d=digits(n)); prod(i=1, #d, sum(j=1, i, d[j])); \\ Michel Marcus, Nov 10 2021
    
  • PARI
    first(n)=if(n<9,return([1..n])); my(v=vector(n)); for(i=1,9,v[i]=i); for(i=10,n, v[i]=sumdigits(i)*v[i\10]); v \\ Charles R Greathouse IV, Dec 04 2021
    
  • Python
    from math import prod
    from itertools import accumulate
    def a(n): return prod(accumulate(map(int, str(n))))
    print([a(n) for n in range(1, 100)]) # Michael S. Branicky, Nov 10 2021
    

Formula

For n>10: a(n) = a(A059995(n))*A007953(n) where A059995(n) = floor(n/10).
In particular, for n<100: a(n) = floor(n/10)*A007953(n)
From Bernard Schott, Nov 23 2021: (Start)
a(n) = 1 iff n = 10^k, k >= 0 (A011557).
a(n) = 2 iff n = 10^k + 1, k >= 0 (A000533 \ {1}).
a(n) = 3 iff n = 10^k + 2, k >= 0 (A133384).
a(n) = 5 iff n = 10^k + 4, k >= 0.
a(n) = 7 iff n = 10^k + 6, k >= 0. (End)
From Marius A. Burtea, Nov 23 2021: (Start)
a(A002275(n)) = n! = A000142(n), n >= 1.
a(A090843(n - 1)) = (2*n - 1)!! = A001147(n), n >= 1.
a(A097166(n)) = (3*n - 2)!!! = A007559(n).
a(A093136(n)) = 2^n = A000079(n).
a(A093138(n)) = 3^n = A000244(n). (End)

A070152 Take pairs (x,y) with Sum_{j = x..y} j = concatenation of x and y. Sort pairs on y then x. This sequence gives x of each pair.

Original entry on oeis.org

1, 2, 4, 13, 18, 33, 35, 7, 78, 133, 178, 228, 273, 388, 710, 1333, 1701, 1778, 2737, 3273, 3563, 3087, 3478, 12488, 13333, 14208, 17778, 31463, 36993, 5338, 7063, 9063, 12643, 15238, 17147, 22448, 23788, 27313, 29058, 34488, 36763, 38788, 43273, 50813, 53578
Offset: 1

Views

Author

Lekraj Beedassy, May 06 2002

Keywords

Comments

From Bernard Schott, Jan 26 2022: (Start)
Some subsequences, from Diophante and Crux Mathematicorum:
{(2*10^m-5)/15, m >= 1} = 1, 13, 133, 1333, ... = A097166.
{2*(4*10^m+5)/45, m >= 1} = 2, 18, 178, 1778, ...
{13*(26*100^m-125)/12375, m >= 2} = 273, 27313, 2731313, ... (End)

Examples

			1+...+5 = 15; 2+...+7 = 27; 4+...+29 = 429; 13+...+53 = 1353; 18+...+63 = 1863.
133+...+533 = 133533.
273+...+2353 = 2732353.
		

Crossrefs

Subsequence: A097166.

Extensions

More terms from David W. Wilson, Jun 04 2002
Name edited by Michel Marcus, Jan 29 2022

A070153 Take pairs (x,y) with Sum_{j = x..y} j = concatenation of x and y. Sort pairs on y then x. This sequence gives y of each pair.

Original entry on oeis.org

5, 7, 29, 53, 63, 88, 91, 119, 403, 533, 623, 2148, 2353, 2813, 3835, 5333, 6076, 6223, 7889, 8728, 9163, 25039, 26603, 51513, 53333, 55168, 62223, 85338, 93633, 103463, 119063, 134938, 159518, 175238, 185979, 213073, 219413, 235313, 242818, 264888
Offset: 1

Views

Author

Lekraj Beedassy, May 06 2002

Keywords

Comments

From Bernard Schott, Jan 26 2022: (Start)
Some subsequences, from Diophante and Crux Mathematicorum:
{(8*10^m-5)/15, m >= 1} = 5, 53, 533, 5333, ... (A350995).
{7*(4*10^m+5)/45, m >= 1} = 7, 63, 623, 6223, ...
{13*(224*100^m-125)/12375, m >= 2} = 2353, 235313, 23531313, ... (End)

Examples

			1+...+5 = 15; 2+...+7 = 27; 4+...+29 = 429; 13+...+53 = 1353; 18+...+63 = 1863.
133+...+533 = 133533.
178+...+623 = 178623.
		

Crossrefs

Cf. A350995 (is a subsequence).

Extensions

More terms from David W. Wilson, Jun 04 2002
Name edited by Michel Marcus, Jan 29 2022

A137233 Number of n-digit even numbers.

Original entry on oeis.org

5, 45, 450, 4500, 45000, 450000, 4500000, 45000000, 450000000, 4500000000, 45000000000, 450000000000, 4500000000000, 45000000000000, 450000000000000, 4500000000000000, 45000000000000000, 450000000000000000, 4500000000000000000, 45000000000000000000, 450000000000000000000
Offset: 1

Views

Author

Ctibor O. Zizka, Mar 08 2008

Keywords

Comments

From Kival Ngaokrajang, Oct 18 2013: (Start)
a(n) is also the total number of double rows identified numbers in n digit.
For example:
n = 1: 01 23 45 67 89 = 5 double rows;
n = 2: 1011 1213 1415 1617 1819...9899 = 45 double rows;
n = 3: 100101 102103 104105...998999 = 450 double rows;
The number of double rows is also A030656. (End)
a(n) is also the number of n-digit integers with an even number of even digits (A356929); a(5) = 45000 is the answer to the question 2 of the Olympiade Mathématique Belge in 2004 (link). - Bernard Schott, Sep 06 2022
a(n) is also the number of n-digit integers with an odd number of odd digits (A054684). - Bernard Schott, Nov 07 2022

Examples

			a(2) = 45 because there are 45 2-digit even numbers.
		

Crossrefs

Programs

Formula

a(n) = 9*10^(n-1)/2 if n > 1. - R. J. Mathar, May 23 2008
From Elmo R. Oliveira, Jul 23 2025: (Start)
G.f.: 5*x*(1-x)/(1-10*x).
E.g.f.: (-9 + 10*x + 9*exp(10*x))/20.
a(n) = 10*a(n-1) for n > 2.
a(n) = A052268(n)/2 for n >= 2. (End)

Extensions

Corrected and extended by R. J. Mathar, May 23 2008
More terms from Elmo R. Oliveira, Jul 23 2025

A056698 Numbers k such that 10^k + 3*R_k is prime, where R_k = 11...1 is the repunit (A002275) of length k.

Original entry on oeis.org

1, 15, 41, 83, 95, 341, 551, 669, 989, 1223, 6923, 103703
Offset: 1

Views

Author

Robert G. Wilson v, Aug 10 2000

Keywords

Comments

Also numbers k such that (4*10^k-1)/3 is prime.
a(13) > 850000 (from Kamada data). - Robert Price, Oct 19 2014

Crossrefs

Programs

  • Mathematica
    Do[ If[ PrimeQ[ 10^n + 3*(10^n-1)/9], Print[n]], {n, 0, 30470}]
  • PARI
    for(k=1,1500,if(ispseudoprime(4*(10^k-1)/3+1),print1(k, ", "))) \\ Hugo Pfoertner, Jul 22 2020

Extensions

a(12) from Kamada data by Robert Price, Oct 19 2014

A350995 a(n) = (16*10^n - 1)/3.

Original entry on oeis.org

5, 53, 533, 5333, 53333, 533333, 5333333, 53333333, 533333333, 5333333333, 53333333333, 533333333333, 5333333333333, 53333333333333, 533333333333333, 5333333333333333, 53333333333333333, 533333333333333333, 5333333333333333333, 53333333333333333333, 533333333333333333333, 5333333333333333333333
Offset: 0

Views

Author

Bernard Schott, Jan 28 2022

Keywords

Comments

These terms 'y' form a subsequence of A070153 and the corresponding terms 'x' are in A097166 (see 3rd formula and examples).

Examples

			a(0) = (16-1)/3 = 5 and Sum_{j=1..5} = 15.
a(1) = (160-1)/3 = 53 and Sum_{j=13..53} = 1353.
a(2) = (1600-1)/3 = 533 and Sum_{j=133..533} = 133533.
		

Crossrefs

Subsequence of A070153.

Programs

  • Maple
    Data := seq((16*10^n-1)/3,  n = 0..21);
  • Mathematica
    Table[(16*10^n - 1)/3, {n, 0, 21}] (* Amiram Eldar, Jan 29 2022 *)

Formula

a(n) = 10*a(n-1) + 3, n>0.
a(n) = 11*a(n-1) - 10*a(n-2), n>1.
A350994(n) = Sum_{j=A097166(n)..a(n)} = A097166(n).a(n) where "." means concatenation.
From Elmo R. Oliveira, May 02 2025: (Start)
G.f.: (5-2*x)/((1-x)*(1-10*x)).
E.g.f.: exp(x)*(16*exp(9*x) - 1)/3. (End)

A309907 a(n) is the square of the number consisting of one 1 and n 3's: (133...3)^2.

Original entry on oeis.org

1, 169, 17689, 1776889, 177768889, 17777688889, 1777776888889, 177777768888889, 17777777688888889, 1777777776888888889, 177777777768888888889, 17777777777688888888889, 1777777777776888888888889, 177777777777768888888888889, 17777777777777688888888888889
Offset: 0

Views

Author

Alois P. Heinz, Aug 21 2019

Keywords

Comments

All terms are zeroless (elements of A052382).

Crossrefs

Programs

  • Maple
    a:= n-> parse(cat(1, 3$n))^2:
    seq(a(n), n=0..18);
  • PARI
    {a(n) = ((4*10^n-1)/3)^2} \\ Seiichi Manyama, Aug 23 2019

Formula

G.f.: -(40*x^2+58*x+1)/((x-1)*(100*x-1)*(10*x-1)).
a(n) = A097166(n)^2 = ((4*10^n-1)/3)^2. - Seiichi Manyama, Aug 23 2019

A350994 a(n) = (40*100^n + 6*10^n - 1)/3.

Original entry on oeis.org

15, 1353, 133533, 13335333, 1333353333, 133333533333, 13333335333333, 1333333353333333, 133333333533333333, 13333333335333333333, 1333333333353333333333, 133333333333533333333333, 13333333333335333333333333, 1333333333333353333333333333, 133333333333333533333333333333
Offset: 0

Views

Author

Bernard Schott, Jan 28 2022

Keywords

Comments

Subsequence of A186074.
Terms of this sequence satisfy the identity proposed in 2nd formula because a(n) = Sum_{j=(4*10^n-1)/3..(16*10^n-1)/3} j = ((4*10^n-1)/3).((16*10^n-1)/3) where "." means concatenation (see examples).

Examples

			a(0) = (40+6-1)/3 = Sum_{j=1..5} j = 15.
a(1) = (4000+60-1)/3 = Sum_{j=13..53} j = 1353.
a(2) = (400000+600-1)/3 = Sum_{j=133..533} j = 133533.
		

Crossrefs

Programs

  • Maple
    Data := seq((40*100^n + 6*10^n - 1)/3,  n = 0..17);
  • Mathematica
    Table[(40*100^n + 6*10^n - 1)/3, {n, 0, 17}] (* Amiram Eldar, Jan 29 2022 *)
    LinearRecurrence[{111,-1110,1000},{15,1353,133533},20] (* Harvey P. Dale, Jun 16 2025 *)

Formula

a(n) = 111*a(n-1) - 1110*a(n-2) + 1000*a(n-3), n >= 3.
a(n) = Sum_{j=A097166(n)..A350995(n)} j = A097166(n).A350995(n) where "." means concatenation.
G.f.: (15 - 312*x)/((1 - x)*(1 - 10*x)*(1 - 100*x)). - Stefano Spezia, Jan 30 2022
a(n) = 2*A332167(n) + 1. - Hugo Pfoertner, Jan 30 2022
E.g.f.: exp(x)*(40*exp(99*x) + 6*exp(9*x) - 1)/3. - Elmo R. Oliveira, May 02 2025

A097169 a(n) = Sum_{k=0..n} C(floor((n+1)/2),floor((k+1)/2)) * 3^k.

Original entry on oeis.org

1, 4, 13, 52, 133, 604, 1333, 6772, 13333, 74284, 133333, 801892, 1333333, 8550364, 13333333, 90286612, 133333333, 945912844, 1333333333, 9846548932, 13333333333, 101952273724, 133333333333, 1050903796852, 1333333333333
Offset: 0

Views

Author

Paul Barry, Jul 30 2004

Keywords

Comments

a(n) = (4/3){1,10,10,100,100,1000...} -9{0,1,0,9,0,81...} -(1/3){1,1,1,1,1,1...} .
a(2n) = A097166(n).
a(2n+1)/4 = A097168(n).

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{1,19,-19,-90,90},{1,4,13,52,133},30] (* Harvey P. Dale, Dec 15 2017 *)

Formula

G.f.: (1+3x-10x^2-18x^3)/((1-x)*(1-9x^2)*(1-10x^2)).
a(n) = 2((1-sqrt(10))(-sqrt(10))^n+(1+sqrt(10))(sqrt(10))^n)/3+3((-3)^n-3^n)/2-1/3.
a(n) = a(n-1) +19a(n-2) -19a(n-3) -90a(n-4) +90a(n-5).
Showing 1-10 of 14 results. Next