cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A097166 Expansion of g.f. (1+2*x)/((1-x)*(1-10*x)).

Original entry on oeis.org

1, 13, 133, 1333, 13333, 133333, 1333333, 13333333, 133333333, 1333333333, 13333333333, 133333333333, 1333333333333, 13333333333333, 133333333333333, 1333333333333333, 13333333333333333, 133333333333333333, 1333333333333333333, 13333333333333333333, 133333333333333333333
Offset: 0

Views

Author

Paul Barry, Jul 30 2004

Keywords

Comments

Partial sums of (1+2*x)/(1-10*x) = {1, 12, 120, 1200, ...}.
Second binomial transform of A082365.
These terms are the x's of A070152 and the corresponding y's are A350995 (see formula and examples). - Bernard Schott, Feb 15 2022

Examples

			a(0) = (4-1)/3 = 1 and Sum_{j=1..5} = 15.
a(1) = (40-1)/3 = 13 and Sum_{j=13..53} = 1353.
a(2) = (400-1)/3 = 133 and Sum_{j=133..533} = 133533.
		

Crossrefs

Cf. A056698 (index of primes), A082365, A097169, A309907 (squares of this).

Programs

  • Magma
    [(4*10^n-1)/3 : n in [0..20]]; // Vincenzo Librandi, Nov 01 2011
    
  • Maple
    a:= n-> parse(cat(1, 3$n)):
    seq(a(n), n=0..18);  # Alois P. Heinz, Aug 23 2019
  • Mathematica
    NestList[10#+3&,1,20] (* Harvey P. Dale, Jan 22 2014 *)
  • Python
    [(4*10**n-1)//3 for n in range(25)] # Gennady Eremin, Mar 04 2022

Formula

a(n) = (4*10^n - 1)/3.
a(n) = A097169(2*n).
a(n) = 10*a(n-1) + 3, n>0. a(n) = 11*a(n-1) - 10*a(n-2), n>1. - Vincenzo Librandi, Nov 01 2011
A350994(n) = Sum_{j=a(n)..A350995(n)} = a(n).A350995(n) where "." means concatenation. - Bernard Schott, Jan 28 2022
From Elmo R. Oliveira, Apr 29 2025: (Start)
E.g.f.: exp(x)*(4*exp(9*x) - 1)/3.
a(n) = A198970(n)/3. (End)

A070153 Take pairs (x,y) with Sum_{j = x..y} j = concatenation of x and y. Sort pairs on y then x. This sequence gives y of each pair.

Original entry on oeis.org

5, 7, 29, 53, 63, 88, 91, 119, 403, 533, 623, 2148, 2353, 2813, 3835, 5333, 6076, 6223, 7889, 8728, 9163, 25039, 26603, 51513, 53333, 55168, 62223, 85338, 93633, 103463, 119063, 134938, 159518, 175238, 185979, 213073, 219413, 235313, 242818, 264888
Offset: 1

Views

Author

Lekraj Beedassy, May 06 2002

Keywords

Comments

From Bernard Schott, Jan 26 2022: (Start)
Some subsequences, from Diophante and Crux Mathematicorum:
{(8*10^m-5)/15, m >= 1} = 5, 53, 533, 5333, ... (A350995).
{7*(4*10^m+5)/45, m >= 1} = 7, 63, 623, 6223, ...
{13*(224*100^m-125)/12375, m >= 2} = 2353, 235313, 23531313, ... (End)

Examples

			1+...+5 = 15; 2+...+7 = 27; 4+...+29 = 429; 13+...+53 = 1353; 18+...+63 = 1863.
133+...+533 = 133533.
178+...+623 = 178623.
		

Crossrefs

Cf. A350995 (is a subsequence).

Extensions

More terms from David W. Wilson, Jun 04 2002
Name edited by Michel Marcus, Jan 29 2022

A350994 a(n) = (40*100^n + 6*10^n - 1)/3.

Original entry on oeis.org

15, 1353, 133533, 13335333, 1333353333, 133333533333, 13333335333333, 1333333353333333, 133333333533333333, 13333333335333333333, 1333333333353333333333, 133333333333533333333333, 13333333333335333333333333, 1333333333333353333333333333, 133333333333333533333333333333
Offset: 0

Views

Author

Bernard Schott, Jan 28 2022

Keywords

Comments

Subsequence of A186074.
Terms of this sequence satisfy the identity proposed in 2nd formula because a(n) = Sum_{j=(4*10^n-1)/3..(16*10^n-1)/3} j = ((4*10^n-1)/3).((16*10^n-1)/3) where "." means concatenation (see examples).

Examples

			a(0) = (40+6-1)/3 = Sum_{j=1..5} j = 15.
a(1) = (4000+60-1)/3 = Sum_{j=13..53} j = 1353.
a(2) = (400000+600-1)/3 = Sum_{j=133..533} j = 133533.
		

Crossrefs

Programs

  • Maple
    Data := seq((40*100^n + 6*10^n - 1)/3,  n = 0..17);
  • Mathematica
    Table[(40*100^n + 6*10^n - 1)/3, {n, 0, 17}] (* Amiram Eldar, Jan 29 2022 *)
    LinearRecurrence[{111,-1110,1000},{15,1353,133533},20] (* Harvey P. Dale, Jun 16 2025 *)

Formula

a(n) = 111*a(n-1) - 1110*a(n-2) + 1000*a(n-3), n >= 3.
a(n) = Sum_{j=A097166(n)..A350995(n)} j = A097166(n).A350995(n) where "." means concatenation.
G.f.: (15 - 312*x)/((1 - x)*(1 - 10*x)*(1 - 100*x)). - Stefano Spezia, Jan 30 2022
a(n) = 2*A332167(n) + 1. - Hugo Pfoertner, Jan 30 2022
E.g.f.: exp(x)*(40*exp(99*x) + 6*exp(9*x) - 1)/3. - Elmo R. Oliveira, May 02 2025

A056714 Numbers k such that 5*10^k + 3*R_k is prime, where R_k = 11...1 is the repunit (A002275) of length k.

Original entry on oeis.org

0, 1, 3, 13, 25, 49, 143, 419, 1705, 13993, 35753, 40889
Offset: 1

Views

Author

Robert G. Wilson v, Aug 11 2000

Keywords

Comments

Also numbers k such that (16*10^k - 1)/3 is prime.
5*10^a(n) + 3*(10^a(n) - 1)/9 is a solution for part (b) of questions of puzzle 244 from www.primepuzzles.net. If a(n) is greater than 5812 then a(n) is an example that is asked for in this question. - Farideh Firoozbakht, Dec 02 2003

Crossrefs

Programs

  • Mathematica
    Do[ If[ PrimeQ[ 5*10^n + 3*(10^n-1)/9], Print[n]], {n, 0, 5000}]

Extensions

1705 from Farideh Firoozbakht, Dec 18 2003
13993, 35753 and 40889 from Serge Batalov, Jan 2009 confirmed as next terms by Ray Chandler, Feb 11 2012
Showing 1-4 of 4 results.