cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A097166 Expansion of g.f. (1+2*x)/((1-x)*(1-10*x)).

Original entry on oeis.org

1, 13, 133, 1333, 13333, 133333, 1333333, 13333333, 133333333, 1333333333, 13333333333, 133333333333, 1333333333333, 13333333333333, 133333333333333, 1333333333333333, 13333333333333333, 133333333333333333, 1333333333333333333, 13333333333333333333, 133333333333333333333
Offset: 0

Views

Author

Paul Barry, Jul 30 2004

Keywords

Comments

Partial sums of (1+2*x)/(1-10*x) = {1, 12, 120, 1200, ...}.
Second binomial transform of A082365.
These terms are the x's of A070152 and the corresponding y's are A350995 (see formula and examples). - Bernard Schott, Feb 15 2022

Examples

			a(0) = (4-1)/3 = 1 and Sum_{j=1..5} = 15.
a(1) = (40-1)/3 = 13 and Sum_{j=13..53} = 1353.
a(2) = (400-1)/3 = 133 and Sum_{j=133..533} = 133533.
		

Crossrefs

Cf. A056698 (index of primes), A082365, A097169, A309907 (squares of this).

Programs

  • Magma
    [(4*10^n-1)/3 : n in [0..20]]; // Vincenzo Librandi, Nov 01 2011
    
  • Maple
    a:= n-> parse(cat(1, 3$n)):
    seq(a(n), n=0..18);  # Alois P. Heinz, Aug 23 2019
  • Mathematica
    NestList[10#+3&,1,20] (* Harvey P. Dale, Jan 22 2014 *)
  • Python
    [(4*10**n-1)//3 for n in range(25)] # Gennady Eremin, Mar 04 2022

Formula

a(n) = (4*10^n - 1)/3.
a(n) = A097169(2*n).
a(n) = 10*a(n-1) + 3, n>0. a(n) = 11*a(n-1) - 10*a(n-2), n>1. - Vincenzo Librandi, Nov 01 2011
A350994(n) = Sum_{j=a(n)..A350995(n)} = a(n).A350995(n) where "." means concatenation. - Bernard Schott, Jan 28 2022
From Elmo R. Oliveira, Apr 29 2025: (Start)
E.g.f.: exp(x)*(4*exp(9*x) - 1)/3.
a(n) = A198970(n)/3. (End)

A309827 a(n) is the square of the number consisting of one 1 and n 6's: (166...6)^2.

Original entry on oeis.org

1, 256, 27556, 2775556, 277755556, 27777555556, 2777775555556, 277777755555556, 27777777555555556, 2777777775555555556, 277777777755555555556, 27777777777555555555556, 2777777777775555555555556, 277777777777755555555555556, 27777777777777555555555555556
Offset: 0

Views

Author

Seiichi Manyama, Aug 23 2019

Keywords

Comments

All terms are zeroless (element of A052382).

Crossrefs

((k*10^n+3-k)/3)^2: A102807 (k=1), A109344 (k=2), A098608 (k=3), A309907 (k=4), this sequence (k=5).

Programs

  • Mathematica
    LinearRecurrence[{111,-1110,1000},{1,256,27556},20] (* Harvey P. Dale, Dec 13 2021 *)
  • PARI
    {a(n) = ((5*10^n-2)/3)^2}
    
  • PARI
    N=20; x='x+O('x^N); Vec((1+145*x+250*x^2)/((1-x)*(1-10*x)*(1-100*x)))

Formula

a(n) = A246057(n)^2 = ((5*10^n-2)/3)^2.
a(n) = 111*a(n-1) - 1110*a(n-2) + 1000*a(n-3).
G.f.: (1+145*x+250*x^2)/((1-x)*(1-10*x)*(1-100*x)).
Showing 1-2 of 2 results.