A186081 Number of binary relations R on {1,2,...,n} such that the transitive closure of R is the trivial relation.
1, 1, 4, 144, 25696, 18082560, 47025585664, 450955726792704, 16260917603754029056, 2253010420928564535951360, 1219004114245442237742488879104, 2601909995433633381004133738019815424, 22040854392120341022554569447470527813779456
Offset: 0
Examples
a(2)=4 because there are four relations on {1,2} whose transitive closure is {(1,1), (1,2), (2,1), (2,2)}. They are the three nontransitive relations,{(1,2), (2,1)}, {(1,2), (2,1), (2,2)}, {(1,1), (1,2), (2,1)} and the trivial relation itself.
Programs
-
Mathematica
Needs["Combinatorica`"]; f[list_] := Apply[Plus, Table[MatrixPower[list,n], {n,1,Length[list]}]]; Join[{1}, Table[Length[Select[Map[Flatten, Map[f, Tuples[Strings[{0, 1}, n], n]]], FreeQ[#, 0] &]], {n, 1, 4}]] (* Second program: *) a[ n_] := If[ n < 1, Boole[n == 0], With[{triv = matnk[n, 2^n^2 - 1]}, Sum[ Boole[triv === transitiveClosure[ matnk[n, k]]], {k, 0, 2^n^2 - 1}]]]; matnk[n_, k_] := Partition[ IntegerDigits[ k, 2, n^2], n]; transitiveClosure[x_] := FixedPoint[ Sign@(# + Dot[#, x]) &, x, Length@x]; (* Michael Somos, Mar 08 2012 *)
Formula
From Geoffrey Critzer, Dec 04 2023: (Start)
E.g.f.: 1 + s(2*x) - x where s(x) is the e.g.f. for A003030. (End)
Extensions
a(0)=1 prepended by Alois P. Heinz, Aug 31 2015
a(6) from Bert Dobbelaere, Feb 16 2019
a(7)-a(12) from Geoffrey Critzer, Dec 04 2023
Comments