A186085 Number of 1-dimensional sandpiles with n grains.
1, 1, 1, 1, 2, 3, 5, 8, 13, 22, 36, 60, 100, 166, 277, 461, 769, 1282, 2137, 3565, 5945, 9916, 16540, 27589, 46022, 76769, 128062, 213628, 356366, 594483, 991706, 1654352, 2759777, 4603843, 7680116, 12811951, 21372882, 35654237, 59478406, 99221923, 165522118, 276124217, 460630839
Offset: 0
Examples
The a(7)=8 smooth compositions of 7 are: : 1: [ 1 1 1 1 1 1 1 ] (composition) : : ooooooo (rendering of sandpile) : : 2: [ 1 1 1 1 2 1 ] : : o : oooooo : : 3: [ 1 1 1 2 1 1 ] : : o : oooooo : : 4: [ 1 1 2 1 1 1 ] : : o : oooooo : : 5: [ 1 1 2 2 1 ] : : oo : ooooo : : 6: [ 1 2 1 1 1 1 ] : : o : oooooo : : 7: [ 1 2 1 2 1 ] : : o o : ooooo : : 8: [ 1 2 2 1 1 ] : : oo : ooooo
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..4502 (terms 0..1000 from Alois P. Heinz)
Crossrefs
Programs
-
Maple
b:= proc(n, i) option remember; `if`(n=0, `if`(i=1, 1, 0), `if`(n<0 or i<1, 0, add(b(n-i, i+j), j=-1..1))) end: a:= n-> `if`(n=0, 1, b(n-1, 1)): seq(a(n), n=0..50); # Alois P. Heinz, Jun 11 2013
-
Mathematica
b[n_, i_] := b[n, i] = If[n == 0, If[i == 1, 1, 0], If[n<0 || i<1, 0, Sum[b[n-i, i+j], {j, -1, 1}]]]; a[n_] := If[n == 0, 1, b[n-1, 1]]; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Feb 03 2014, after Alois P. Heinz *)
-
PARI
{a(n)=local(Txy=1+x*y); for(i=1, n, Txy=1/(1-x*y-x^3*y^2*subst(Txy, y, x*y+x*O(x^n)))); polcoeff(subst(1+x*Txy, y, 1), n, x)} /* Paul D. Hanna */
-
PARI
/* continued fraction for terms up to 460630839: */ Vec(1/ (1-x/ (1-x^3/ (1-x^2/ (1-x^3/ (1-x^7/ (1-x^4/ (1-x^5/ (1-x^11/ (1-x^6/(1-x*O(x^0) ))))))))))) /* Paul D. Hanna */
-
PARI
N = 66; x = 'x + O('x^N); Q(k) = if(k>N, 1, 1/x^(k+1) - 1 - 1/Q(k+1) ); gf = 1 + 1/Q(0); Vec(gf) /* Joerg Arndt, May 07 2013 */
Formula
G.f.: 1 + x/(1-x - x^3*B(x)) where B(x) equals the g.f. of the antidiagonal sums of triangle A186084 [Paul D. Hanna].
G.f.: 1 + x/(1-x - x^3/(1-x^2 - x^5/(1-x^3 - x^7/(1-x^4 - x^9/(1 -...))))) (continued fraction). [Paul D. Hanna].
G.f.: 1/(1 - x/(1-x^3/(1-x^2/(1 - x^3/(1-x^7/(1-x^4/(1 - x^5/(1-x^11/(1-x^6/(1 -...)))))))))) (continued fraction). [Paul D. Hanna].
The g.f. T(x,y) of triangle A186084 satisfies: T(x,y) = 1/(1 - x*y - x^3*y^2*T(x,x*y)); therefore, the g.f. of this sequence is A(x) = 1 + x*T(x,1). [Paul D. Hanna]
a(n) ~ c/r^n where r = 0.5994477646147968266874606710272382... and c = 0.213259838728143595595398989847345... [Paul D. Hanna]
G.f.: 1 + 1/Q(0), where Q(k)= 1/x^(k+1) - 1 - 1/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, May 07 2013
G.f.: G(1), where G(k) = 1 + x^k/( 1 - x^k * G(k+1) ) (continued fraction). [Joerg Arndt, Jun 29 2013]
a(n) = Sum_{j=1..n} A129181(n-j,j-1) for n>=1. - Alois P. Heinz, Jun 25 2023
Comments