A186084 Triangle T(n,k) read by rows: number of 1-dimensional sandpiles (see A186085) with n grains and base length k.
1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 2, 1, 0, 0, 0, 1, 3, 1, 0, 0, 0, 0, 3, 4, 1, 0, 0, 0, 0, 1, 6, 5, 1, 0, 0, 0, 0, 1, 4, 10, 6, 1, 0, 0, 0, 0, 0, 3, 10, 15, 7, 1, 0, 0, 0, 0, 0, 2, 8, 20, 21, 8, 1, 0, 0, 0, 0, 0, 1, 7, 19, 35, 28, 9, 1, 0, 0, 0, 0, 0, 0, 5, 18, 40, 56, 36, 10, 1, 0, 0, 0, 0, 0, 0, 3, 16, 41, 76, 84, 45, 11, 1, 0, 0, 0, 0, 0, 0, 1, 12, 41, 86, 133, 120, 55, 12, 1
Offset: 0
Examples
Triangle begins: 1; 0,1; 0,0,1; 0,0,1,1; 0,0,0,2,1; 0,0,0,1,3,1; 0,0,0,0,3,4,1; 0,0,0,0,1,6,5,1; 0,0,0,0,1,4,10,6,1; 0,0,0,0,0,3,10,15,7,1; 0,0,0,0,0,2,8,20,21,8,1; 0,0,0,0,0,1,7,19,35,28,9,1;
Links
- Alois P. Heinz, Rows n = 0..140, flattened
- Joerg Arndt, the first 36 rows as Pari script.
Crossrefs
Programs
-
Maple
b:= proc(n, i) option remember; `if`(n=0, `if`(i=1, 1, 0), `if`(n<0 or i<1, 0, expand(x*add(b(n-i, i+j), j=-1..1)) )) end: T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n, 1)): seq(T(n), n=0..20); # Alois P. Heinz, Jul 24 2013
-
Mathematica
b[n_, i_] := b[n, i] = If[n == 0, If[i == 1, 1, 0], If[n<0 || i<1, 0, Expand[ x*Sum[b[n-i, i+j], {j, -1, 1}]]]]; T[n_] := Function[{p}, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}]][b[n, 1]]; Table[T[n], {n, 0, 20}] // Flatten (* Jean-François Alcover, Feb 18 2015, after Alois P. Heinz *)
-
PARI
{T(n,k)=local(A=1+x*y);for(i=1,n,A=1/(1-x*y-x^3*y^2*subst(A,y,x*y+x*O(x^n))));polcoeff(polcoeff(A,n,x),k,y)} /* Paul D. Hanna */
Formula
G.f. A(x,y) satisfies: A(x,y) = 1/(1 - x*y - x^3*y^2*A(x, x*y) ). [Paul D. Hanna, Feb 22 2011]
G.f.: (formatting to make the structure apparent)
A(x,y) = 1 /
(1 - x^1*y / (1 - x^2*y / (1 - x^5*y^2 /
(1 - x^3*y / (1 - x^4*y / (1 - x^9*y^2 /
(1 - x^5*y / (1 - x^6*y / (1 - x^13*y^2 /
(1 - x^7*y / (1 - x^8*y / (1 - x^17*y^2 / (1 -...)))))))))))))
(continued fraction). [Paul D. Hanna]
G.f.: A(x,y) = 1/(1-x*y - x^3*y^2/(1-x^2*y - x^5*y^2/(1-x^3*y - x^7*y^2/(1 -...)))) (continued fraction). [Paul D. Hanna]
Comments