A291905 Row sums of A291904.
1, 1, 0, 1, 1, 0, 2, 1, 1, 3, 2, 3, 4, 4, 6, 8, 8, 11, 14, 16, 21, 26, 32, 39, 49, 60, 75, 93, 114, 142, 176, 217, 268, 334, 411, 510, 632, 779, 967, 1196, 1477, 1832, 2266, 2801, 3470, 4291, 5310, 6572, 8129, 10061, 12449, 15401, 19058, 23581, 29178, 36102, 44668
Offset: 0
Keywords
Examples
The a(6)=2 compositions of 6 are: : : o o| : oooo| : : o| : oo| : ooo| : The a(9)=3 compositions of 9 are: : : o | : ooo | : ooooo| : : o o o| : oooooo| : : o| : o oo| : ooooo|
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..10000
Programs
-
Maple
b:= proc(n, i) option remember; `if`(n=0, 1, add( `if`(j=i, 0, b(n-j, j)), j=max(1, i-1)..min(i+1, n))) end: a:= n-> b(n, 0): seq(a(n), n=0..60); # Alois P. Heinz, Sep 05 2017
-
Mathematica
T[0, 0] = 1; T[, 0] = 0; T[n?Positive, k_] /; 0 < k <= Floor[(Sqrt[8n+1] - 1)/2] := T[n, k] = T[n-k, k-1] + T[n-k, k+1]; T[, ] = 0; a[n_] := Sum[T[n, k], {k, 0, Floor[(Sqrt[8n+1] - 1)/2]}]; Table[a[n], {n, 0, 60}] (* Jean-François Alcover, May 29 2019 *)
-
Python
from sympy.core.cache import cacheit @cacheit def b(n, i): return 1 if n==0 else sum(b(n - j, j) for j in range(max(1, i - 1), min(i + 1, n) + 1) if j != i) def a(n): return b(n, 0) print([a(n) for n in range(61)]) # Indranil Ghosh, Sep 06 2017, after Maple program
Comments