cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A186101 a(n) = 2*n / 3 if n divisible by 3, a(n) = n otherwise.

Original entry on oeis.org

0, 1, 2, 2, 4, 5, 4, 7, 8, 6, 10, 11, 8, 13, 14, 10, 16, 17, 12, 19, 20, 14, 22, 23, 16, 25, 26, 18, 28, 29, 20, 31, 32, 22, 34, 35, 24, 37, 38, 26, 40, 41, 28, 43, 44, 30, 46, 47, 32, 49, 50, 34, 52, 53, 36, 55, 56, 38, 58, 59, 40, 61, 62, 42, 64, 65, 44, 67, 68, 46, 70, 71, 48
Offset: 0

Views

Author

Michael Somos, Feb 12 2011

Keywords

Examples

			x + 2*x^2 + 2*x^3 + 4*x^4 + 5*x^5 + 4*x^6 + 7*x^7 + 8*x^8 + 6*x^9 + ...
		

Programs

  • Mathematica
    Table[If[Divisible[n,3],2 n/3,n],{n,0,80}] (* or *) LinearRecurrence[ {0,0,2,0,0,-1},{0,1,2,2,4,5},80] (* Harvey P. Dale, Apr 15 2015 *)
  • PARI
    {a(n) = n - if( n%3, 0, n/3)}
    
  • PARI
    {a(n) = if( n==0, 0, sign(n) * direuler( p=2, abs(n), (1 - (p==3) * X) / (1 - p * X)) [abs(n)])}
    
  • PARI
    concat(0, Vec(x*(1 + x)^2*(1 + x^2)/(1 - x^3)^2 + O(x^100))) \\ Colin Barker, Mar 06 2017

Formula

Euler transform of length 4 sequence [ 2, -1, 2, -1].
a(n) is multiplicative with a(3^e) = (2*3^e + 0^e)/3, a(p^e) = p^e otherwise.
G.f.: x * (1 + x)^2 * (1 + x^2) / (1 - x^3)^2.
a(-n) = -a(n).
Dirichlet g.f.: zeta(s-1)*(1-1/3^s). - R. J. Mathar, Mar 12 2012
a(0)=0, a(1)=1, a(2)=2, a(3)=2, a(4)=4, a(5)=5, a(n)=2*a(n-3)-a(n-6). - Harvey P. Dale, Apr 15 2015
a(n) = n*(8 - 2*cos((2*Pi*n)/3)) / 9. - Colin Barker, Mar 06 2017
Sum_{k=1..n} a(k) ~ (4/9) * n^2. - Amiram Eldar, Nov 28 2022