cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A066393 Coordination sequence for (9^3, 3.9^2) net with respect to a vertex of type 9^3.

Original entry on oeis.org

1, 3, 6, 6, 12, 15, 12, 21, 24, 18, 30, 33, 24, 39, 42, 30, 48, 51, 36, 57, 60, 42, 66, 69, 48, 75, 78, 54, 84, 87, 60, 93, 96, 66, 102, 105, 72, 111, 114, 78, 120, 123, 84, 129, 132, 90, 138, 141, 96, 147, 150, 102, 156, 159, 108, 165, 168, 114
Offset: 0

Views

Author

N. J. A. Sloane, Dec 24 2001

Keywords

Comments

This net may be regarded as a tiling of the plane by 9-gons and triangles. There are two kinds of vertices: (a) 9^3 vertices, where three 9-gons meet, and (b) 3.9^2 vertices, where a triangle and two 9-gons meet. The present sequence is the coordination sequence with respect to a vertex of type 9^3. See also A319980.

Crossrefs

Programs

  • Maple
    seq(coeftayl((1+3*x+6*x^2+4*x^3+6*x^4+3*x^5+x^6)/(1-x^3)^2, x = 0, k), k=0..60); # Muniru A Asiru, Feb 13 2018

Formula

G.f.: (1+3*x+6*x^2+4*x^3+6*x^4+3*x^5+x^6)/(1-x^3)^2.
a(n) = (3*n + lcm(n,3))/2, for n>=1. - Ridouane Oudra, Jan 22 2021
a(n) = 3*A186101(n), for n>=1. - Ridouane Oudra, Jun 11 2025

A255368 a(n) = -(-1)^n * 2 * n / 3 if n divisible by 3, a(n) = -(-1)^n * n otherwise.

Original entry on oeis.org

0, 1, -2, 2, -4, 5, -4, 7, -8, 6, -10, 11, -8, 13, -14, 10, -16, 17, -12, 19, -20, 14, -22, 23, -16, 25, -26, 18, -28, 29, -20, 31, -32, 22, -34, 35, -24, 37, -38, 26, -40, 41, -28, 43, -44, 30, -46, 47, -32, 49, -50, 34, -52, 53, -36, 55, -56, 38, -58, 59
Offset: 0

Views

Author

Michael Somos, May 04 2015

Keywords

Examples

			G.f. = x - 2*x^2 + 2*x^3 - 4*x^4 + 5*x^5 - 4*x^6 + 7*x^7 - 8*x^8 + 6*x^9 + ...
		

Crossrefs

Cf. A186101.

Programs

  • Magma
    m:=60; R:=PowerSeriesRing(Integers(), m); [0] cat Coefficients(R!(x*(1-x)^2*(1+x^2)/(1+x^3)^2)); // G. C. Greubel, Aug 02 2018
  • Mathematica
    a[ n_] := -(-1)^n If[ Divisible[ n, 3], 2 n/3, n];
    a[ n_] := n {1, -1, 2/3, -1, 1, -2/3}[[Mod[n, 6, 1]]];
    CoefficientList[Series[x*(1-x)^2*(1+x^2)/(1+x^3)^2, {x,0,60}], x] (* G. C. Greubel, Aug 02 2018 *)
  • PARI
    {a(n) = -(-1)^n * if( n%3, n, 2*n/3)};
    
  • PARI
    my(x='x+O('x^60)); concat([0], Vec(x*(1-x)^2*(1+x^2)/(1+x^3)^2)) \\ G. C. Greubel, Aug 02 2018
    

Formula

Euler transform of length 6 sequence [-2, 1, -2, -1, 0, 2].
a(n) is multiplicative with a(2^e) = -(2^e) if e>0, a(3^e) = 2 * 3^(e-1) if e>0, otherwise a(p^e) = p^e.
G.f.: f(x) - f(x^3) where f(x) := x / (1 + x)^2.
G.f.: x * (1 - x)^2 * (1 + x^2) / (1 + x^3)^2.
G.f.: x * (1 - x)^2 * (1 - x^3)^2 * (1 - x^4) / ((1 - x^2) * (1 - x^6)^2).
a(n) = -a(-n) = -(-1)^n * A186101(n) for all n in Z.
Dirichlet g.f.: zeta(s-1)*(2^s-4)*(3^s-1)/6^s. - Amiram Eldar, Dec 29 2022
Showing 1-2 of 2 results.