1, 3, 5, 7, 8, 10, 11, 12, 14, 15, 16, 18, 19, 20, 22, 23, 24, 25, 27, 28, 29, 30, 31, 33, 34, 35, 36, 37, 39, 40, 41, 42, 43, 45, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 76, 77, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 102, 103, 105, 106, 107, 108, 109, 110, 111, 112, 113, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 138, 139, 140, 141
Offset: 1
A186152
Rank of (1/8)n^3 when {(1/8)i^3: i>=1} and {j^2>: j>=1} are jointly ranked with (1/8)i^3 before j^2 when (1/8)i^3=j^2. Complement of A186153.
Original entry on oeis.org
1, 2, 4, 6, 8, 11, 13, 15, 18, 21, 23, 26, 29, 32, 35, 38, 41, 44, 48, 51, 55, 58, 61, 65, 69, 72, 76, 80, 84, 88, 92, 95, 100, 104, 108, 112, 116, 120, 125, 129, 133, 138, 142, 147, 151, 156, 160, 165, 170, 174, 179, 184, 189, 194, 199, 204, 209, 214, 219, 224, 229, 234, 239, 245, 250, 255, 260, 266, 271, 277, 282, 287, 293, 299, 304, 310, 315, 321, 327, 332, 338, 344, 350, 356, 362, 367, 373, 379, 385, 391, 397, 403, 410, 416, 422, 428, 434, 440, 447, 453
Offset: 1
-
d=1/16;u=1/8;v=1;p=3;q=2;
h[n_]:=((u*n^p-d)/v)^(1/q);
a[n_]:=n+Floor[h[n]]; (* rank of u*n^p *)
k[n_]:=((v*n^q+d)/u)^(1/p);
b[n_]:=n+Floor[k[n]]; (* rank of v*n^q *)
Table[a[n],{n,1,100}] (* A186152 *)
Table[b[n],{n,1,100}] (* A186153 *)
A186148
Rank of (1/4)n^3 when {(1/4)i^3: i>=1} and {j^2>: j>=1} are jointly ranked with (1/4)i^3 before j^2 when (1/4)i^3=j^2. Complement of A186149.
Original entry on oeis.org
1, 3, 5, 7, 10, 13, 16, 19, 22, 25, 29, 32, 36, 40, 44, 47, 52, 56, 60, 64, 69, 73, 78, 82, 87, 92, 97, 102, 107, 112, 117, 122, 127, 133, 138, 143, 149, 155, 160, 166, 172, 178, 183, 189, 195, 201, 208, 214, 220, 226, 233, 239, 245, 252, 258, 265, 272, 278, 285, 292, 299, 306, 313, 319, 327, 334, 341, 348, 355, 362, 370, 377, 384, 392, 399, 407, 414, 422, 430, 437, 445, 453, 461, 468, 476, 484, 492, 500
Offset: 1
Write preliminary separate rankings:
1/4...2....27/4....16.....125/4...
....1...4.......9..16..25........36..49
Then replace each number by its rank, where ties are settled by ranking the top number before the bottom.
-
d=1/8; u=1/4; v=1; p=3; q=2;
h[n_]:=((u*n^p-d)/v)^(1/q);
a[n_]:=n+Floor[h[n]]; (* rank of u*n^p *)
k[n_]:=((v*n^q+d)/u)^(1/p);
b[n_]:=n+Floor[k[n]]; (* rank of v*n^q *)
Table[a[n],{n,1,100}] (* A186148 *)
Table[b[n],{n,1,100}] (* A186149 *)
A186153
Rank of n^2 when {(1/8)i^3: i>=1} and {j^2>: j>=1} are jointly ranked with (1/8)i^3 before j^2 when (1/8)i^3=j^2. Complement of A186152.
Original entry on oeis.org
3, 5, 7, 9, 10, 12, 14, 16, 17, 19, 20, 22, 24, 25, 27, 28, 30, 31, 33, 34, 36, 37, 39, 40, 42, 43, 45, 46, 47, 49, 50, 52, 53, 54, 56, 57, 59, 60, 62, 63, 64, 66, 67, 68, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 85, 86, 87, 89, 90, 91, 93, 94, 96, 97, 98, 99, 101, 102, 103, 105, 106, 107, 109, 110, 111, 113, 114, 115, 117, 118, 119, 121, 122, 123, 124, 126, 127, 128, 130, 131, 132, 134, 135, 136, 137, 139, 140
Offset: 1
A186154
Rank of (1/8)n^3 when {(1/8)i^3: i>=1} and {j^2>: j>=1} are jointly ranked with (1/8)i^3 after j^2 when (1/8)i^3=j^2. Complement of A186155.
Original entry on oeis.org
1, 3, 4, 6, 8, 11, 13, 16, 18, 21, 23, 26, 29, 32, 35, 38, 41, 45, 48, 51, 55, 58, 61, 65, 69, 72, 76, 80, 84, 88, 92, 96, 100, 104, 108, 112, 116, 120, 125, 129, 133, 138, 142, 147, 151, 156, 160, 165, 170, 175, 179, 184, 189, 194, 199, 204, 209, 214, 219, 224, 229, 234, 239, 245, 250, 255, 260, 266, 271, 277, 282, 288, 293, 299, 304, 310, 315, 321, 327, 332, 338, 344, 350, 356, 362, 367, 373, 379, 385, 391, 397, 403, 410
Offset: 1
-
d=-1/16; u=1/8; v=1; p=3; q=2;
h[n_]:=((u*n^p-d)/v)^(1/q);
a[n_]:=n+Floor[h[n]]; (* rank of u*n^p *)
k[n_]:=((v*n^q+d)/u)^(1/p);
b[n_]:=n+Floor[k[n]]; (* rank of v*n^q *)
Table[a[n],{n,1,100}] (* A186154 *)
Table[b[n],{n,1,100}] (* A186155 *)
A186150
Rank of (1/4)n^3 when {(1/4)i^3: i>=1} and {j^2>: j>=1} are jointly ranked with (1/4)i^3 after j^2 when (1/4)i^3=j^2. Complement of A186151.
Original entry on oeis.org
1, 3, 5, 8, 10, 13, 16, 19, 22, 25, 29, 32, 36, 40, 44, 48, 52, 56, 60, 64, 69, 73, 78, 82, 87, 92, 97, 102, 107, 112, 117, 122, 127, 133, 138, 144, 149, 155, 160, 166, 172, 178, 183, 189, 195, 201, 208, 214, 220, 226, 233, 239, 245, 252, 258, 265, 272, 278, 285, 292, 299, 306, 313, 320, 327, 334, 341, 348, 355, 362, 370, 377, 384, 392, 399, 407, 414, 422, 430, 437, 445, 453, 461, 468, 476, 484, 492, 500, 508, 516, 525, 533, 541, 549, 557, 566, 574, 583, 591, 600
Offset: 1
-
d=-1/8; u=1/4; v=1; p=3; q=2;
h[n_]:=((u*n^p-d)/v)^(1/q);
a[n_]:=n+Floor[h[n]]; (* rank of u*n^p *)
k[n_]:=((v*n^q+d)/u)^(1/p);
b[n_]:=n+Floor[k[n]]; (* rank of v*n^q *)
Table[a[n],{n,1,100}] (* A186150 *)
Table[b[n],{n,1,100}] (* A186151 *)
A186156
Rank of n^3 when {i^3: i>=1} and {2j^2: j>=1} are jointly ranked with i^3 before 2j^2 when i^3=2j^2. Complement of A186157.
Original entry on oeis.org
1, 3, 6, 9, 12, 16, 20, 23, 28, 32, 36, 41, 46, 51, 56, 61, 66, 71, 77, 83, 89, 94, 100, 107, 113, 119, 126, 132, 139, 146, 153, 159, 167, 174, 181, 188, 196, 203, 211, 218, 226, 234, 242, 250, 258, 266, 274, 283, 291, 299, 308, 317, 325, 334, 343, 352, 361, 370, 379, 388, 397, 407, 416, 426, 435, 445, 454, 464, 474, 484, 494, 503, 514, 524, 534, 544, 554, 565, 575, 585, 596, 607, 617, 628, 639, 649, 660, 671, 682
Offset: 1
Write separate rankings as
1....8.....27........64........125...
..2..8..18....32..50....72..98.....128...
Then replace each number by its rank, where ties are settled by ranking i^3 before 2j^2.
-
d=1/2; u=1; v=2; p=3; q=2;
h[n_]:=((u*n^p-d)/v)^(1/q);
a[n_]:=n+Floor[h[n]]; (* rank of u*n^p *)
k[n_]:=((v*n^q+d)/u)^(1/p);
b[n_]:=n+Floor[k[n]]; (* rank of v*n^q *)
Table[a[n],{n,1,100}] (* A186156 *)
Table[b[n],{n,1,100}] (* A186157 *)
A186147
Rank of n^3 when {i^2: i>=1} and {j^3: j>=1} are jointly ranked with i^2 after j^3 when i^2=j^3. Complement of A135674.
Original entry on oeis.org
1, 4, 8, 11, 16, 20, 25, 30, 35, 41, 47, 53, 59, 66, 73, 79, 87, 94, 101, 109, 117, 125, 133, 141, 149, 158, 167, 176, 185, 194, 203, 213, 222, 232, 242, 251, 262, 272, 282, 292, 303, 314, 324, 335, 346, 357, 369, 380, 391, 403, 415, 426, 438, 450, 462, 475, 487, 499, 512, 524, 537, 550, 563, 575, 589, 602, 615, 628, 642, 655, 669, 682, 696, 710, 724, 738, 752, 766, 781, 795, 809, 824, 839, 853, 868, 883, 898, 913
Offset: 1
-
d=-1/2;
a[n_]:=n+Floor[(n^2-d)^(1/3)]; (* rank of n^2 *)
b[n_]:=n+Floor[(n^3+d)^(1/2)]; (* rank of n^3-1/2 *)
Table[a[n],{n,1,100}] (* A135674 *)
Table[b[n],{n,1,100}] (* A186147 *)
Comments