1, 3, 5, 7, 8, 10, 11, 12, 14, 15, 16, 18, 19, 20, 22, 23, 24, 25, 27, 28, 29, 30, 31, 33, 34, 35, 36, 37, 39, 40, 41, 42, 43, 45, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 76, 77, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 102, 103, 105, 106, 107, 108, 109, 110, 111, 112, 113, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 138, 139, 140, 141
Offset: 1
A186159
Adjusted joint rank sequence of (f(i)) and (g(j)) with f(i) before g(j) when f(i)=g(j), where f and g are the triangular numbers and octagonal numbers. Complement of A186274.
Original entry on oeis.org
1, 3, 4, 6, 7, 8, 10, 11, 13, 14, 16, 17, 18, 20, 21, 23, 24, 25, 27, 28, 30, 31, 32, 34, 35, 37, 38, 39, 41, 42, 44, 45, 47, 48, 49, 51, 52, 54, 55, 56, 58, 59, 61, 62, 63, 65, 66, 68, 69, 70, 72, 73, 75, 76, 77, 79, 80, 82, 83, 85, 86, 87, 89, 90, 92, 93, 94, 96, 97, 99, 100, 101, 103, 104, 106, 107, 108, 110, 111, 113, 114, 116, 117, 118, 120, 121, 123, 124, 125, 127, 128, 130, 131, 132, 134, 135, 137, 138, 139, 141
Offset: 1
First, write the triangular and octagonal numbers:
1..3..6.....10..15..21..28
1........8..........21......
Then replace each by its rank, where ties are settled by ranking the triangular number before the octagonal:
a=(1,3,4,6,7,8,10,11,13,...)=A186159.
b=(2,5,9,12,15,19,22,26,...)=A186274.
-
(* adjusted joint ranking; general formula *)
d=1/2; u=1/2; v=1/2; w=0; x=3; y=-2; z=0;
h[n_]:=-y+(4x(u*n^2+v*n+w-z-d)+y^2)^(1/2);
a[n_]:=n+Floor[h[n]/(2x)];
k[n_]:=-v+(4u(x*n^2+y*n+z-w+d)+v^2)^(1/2);
b[n_]:=n+Floor[k[n]/(2u)];
Table[a[n],{n,1,100}] (* A186159 *)
Table[b[n],{n,1,100}] (* A186274 *)
A186222
Adjusted joint rank sequence of (g(i)) and (f(j)) with f(i) after g(j) when f(i)=g(j), where f and g are the triangular numbers and squares. Complement of A186221.
Original entry on oeis.org
1, 4, 6, 9, 11, 13, 16, 18, 21, 23, 26, 28, 30, 33, 35, 38, 40, 42, 45, 47, 50, 52, 55, 57, 59, 62, 64, 67, 69, 71, 74, 76, 79, 81, 83, 86, 88, 91, 93, 96, 98, 100, 103, 105, 108, 110, 112, 115, 117, 120, 122, 125, 127, 129, 132, 134, 137, 139, 141, 144, 146, 149, 151, 154, 156, 158, 161, 163, 166, 168, 170, 173, 175, 178, 180, 182, 185, 187, 190, 192, 195, 197, 199, 202, 204, 207, 209, 211, 214, 216, 219, 221, 224, 226, 228, 231, 233, 236, 238, 240
Offset: 1
-
[n + Floor(-1/2 + Sqrt(2*n^2)): n in [1..120]]; // G. C. Greubel, Aug 18 2018
-
(* adjusted joint ranking; general formula *)
d=-1/4; u=1/2; v=1/2; w=0; x=1; y=0; z=0;
h[n_]:=-y+(4x(u*n^2+v*n+w-z-d)+y^2)^(1/2);
a[n_]:=n+Floor[h[n]/(2x)];
k[n_]:=-v+(4u(x*n^2+y*n+z-w+d)+v^2)^(1/2);
b[n_]:=n+Floor[k[n]/(2u)];
Table[a[n],{n,1,100}] (* A186221 *)
Table[b[n],{n,1,100}] (* A186222 *)
Table[n + Floor[Sqrt[2*n^2] - 1/2], {n, 1, 120}] (* G. C. Greubel, Aug 18 2018 *)
-
vector(120, n, n + floor(-1/2 + sqrt(2*n^2))) \\ G. C. Greubel, Aug 18 2018
A186499
Adjusted joint rank sequence of (f(i)) and (g(j)) with f(i) before g(j) when f(i)=g(j), where f(i)=i^2 and g(j)=-4+5j^2. Complement of A186500.
Original entry on oeis.org
1, 3, 4, 5, 7, 8, 10, 11, 13, 14, 15, 17, 18, 20, 21, 23, 24, 26, 27, 28, 30, 31, 33, 34, 36, 37, 39, 40, 41, 43, 44, 46, 47, 49, 50, 52, 53, 55, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 70, 72, 73, 75, 76, 78, 79, 81, 82, 83, 85, 86, 88, 89, 91, 92, 94, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 109, 111, 112, 114, 115, 117, 118, 120, 121, 123, 124, 125, 127, 128, 130, 131, 133, 134, 136, 137, 138, 140, 141, 143, 144
Offset: 1
First, write
1..4..9..16..25..36..49..... (i^2)
1........16........41........(-4+5j^2)
Then replace each number by its rank, where ties are settled by ranking i^2 before -4+5j^2:
a=(1,3,4,5,7,8,10,11,13,14,15,17,18...)=A186499
b=(2,6,9,12,16,19,22,25,29,32,35,38,..)=A186500.
-
(* adjusted joint rank sequences a and b, using general formula for ranking ui^2+vi+w and xj^2+yj+z *)
d=1/2; u=1; v=0; w=0; x=5; y=0; z=4;
h[n_]:=-y+(4x(u*n^2+v*n+w-z-d)+y^2)^(1/2);
a[n_]:=n+Floor[h[n]/(2 x)];
k[n_]:=-v+(4u(x*n^2+y*n+z-w+d)+v^2)^(1/2);
b[n_]:=n + Floor[k[n]/(2 u)];
Table[a[n], {n, 1, 100}] (* A186499 *)
Table[b[n], {n, 1, 100}] (* A186500 *)
A186500
Adjusted joint rank sequence of (f(i)) and (g(j)) with f(i) before g(j) when f(i)=g(j), where f(i)=i^2 and g(j)=-4+5j^2. Complement of A186499.
Original entry on oeis.org
2, 6, 9, 12, 16, 19, 22, 25, 29, 32, 35, 38, 42, 45, 48, 51, 54, 58, 61, 64, 67, 71, 74, 77, 80, 84, 87, 90, 93, 97, 100, 103, 106, 110, 113, 116, 119, 122, 126, 129, 132, 135, 139, 142, 145, 148, 152, 155, 158, 161, 165, 168, 171, 174, 177, 181, 184, 187, 190, 194, 197, 200, 203, 207, 210, 213, 216, 220, 223, 226, 229, 232, 236, 239, 242, 245, 249, 252, 255, 258, 262, 265
Offset: 1
First, write
1..4..9..16..25..36..49..... (i^2)
1........16........41........(-4+5j^2)
Then replace each number by its rank, where ties are settled by ranking i^2 before -4+5j^2:
a=(1,3,4,5,7,8,10,11,13,14,15,17,18...)=A186499
b=(2,6,9,12,16,19,22,25,29,32,35,38,.)=A186500.
A186221
Adjusted joint rank sequence of (f(i)) and (g(j)) with f(i) after g(j) when f(i)=g(j), where f and g are the triangular numbers and squares. Complement of A186222.
Original entry on oeis.org
2, 3, 5, 7, 8, 10, 12, 14, 15, 17, 19, 20, 22, 24, 25, 27, 29, 31, 32, 34, 36, 37, 39, 41, 43, 44, 46, 48, 49, 51, 53, 54, 56, 58, 60, 61, 63, 65, 66, 68, 70, 72, 73, 75, 77, 78, 80, 82, 84, 85, 87, 89, 90, 92, 94, 95, 97, 99, 101, 102, 104, 106, 107, 109, 111, 113, 114, 116, 118, 119, 121, 123, 124, 126, 128, 130, 131, 133, 135, 136, 138, 140, 142, 143, 145, 147, 148, 150, 152, 153, 155, 157, 159, 160, 162, 164, 165, 167, 169, 171
Offset: 1
First, write
1..3...6..10..15...21..28..36..45... (triangular)
1....4...9......16...25....36....49.. (square)
Replace each number by its rank, where ties are settled by ranking the triangular number after the square:
a=(2,3,5,7,8,10,12,14,...)
b=(1,4,6,9,11,13,16,18,...).
-
[n + Floor(Sqrt((n^2+n)/2 + 1/4)): n in [1..120]]; // G. C. Greubel, Aug 18 2018
-
(* adjusted joint ranking; general formula *)
d=-1/4; u=1/2; v=1/2; w=0; x=1; y=0; z=0;
h[n_]:=-y+(4x(u*n^2+v*n+w-z-d)+y^2)^(1/2);
a[n_]:=n+Floor[h[n]/(2x)];
k[n_]:=-v+(4u(x*n^2+y*n+z-w+d)+v^2)^(1/2);
b[n_]:=n+Floor[k[n]/(2u)];
Table[a[n],{n,1,100}] (* A186221 *)
Table[b[n],{n,1,100}] (* A186222 *)
a[ n_] := n + Floor[ Sqrt[ n (n + 1)/2]]; (* Michael Somos, Aug 19 2018 *)
-
vector(120, n, n + floor(sqrt((n^2+n)/2 + 1/4))) \\ G. C. Greubel, Aug 18 2018
{a(n) = n + sqrtint( n * (n+1) \ 2)}; /* Michael Somos, Aug 19 2018 */
A186223
Adjusted joint rank sequence of (f(i)) and (g(j)) with f(i) before g(j) when f(i)=g(j), where f and g are the triangular numbers and pentagonal numbers. Complement of A186224.
Original entry on oeis.org
1, 3, 5, 6, 8, 9, 11, 13, 14, 16, 17, 19, 20, 22, 24, 25, 27, 28, 30, 31, 33, 35, 36, 38, 39, 41, 43, 44, 46, 47, 49, 50, 52, 54, 55, 57, 58, 60, 61, 63, 65, 66, 68, 69, 71, 73, 74, 76, 77, 79, 80, 82, 84, 85, 87, 88, 90, 91, 93, 95, 96, 98, 99, 101, 102, 104, 106, 107, 109, 110, 112, 114, 115, 117, 118, 120, 121, 123, 125, 126, 128, 129, 131, 132, 134, 136, 137, 139, 140, 142, 143, 145, 147, 148, 150, 151, 153, 155, 156, 158
Offset: 1
First, write
1..3...6..10....15...21.....28......36...45... (triangular)
1....5.........12...........22......35........... (pentagonal)
Replace each number by its rank, where ties are settled by ranking the triangular number before the pentagonal:
a=(1,3,5,6,8,9,11,13,...)
b=(2,4,7,10,12,15,18,...).
-
d=1/2; u=1/2; v=1/2; w=0; x=3/2; y=-1/2; z=0;
(* triangular & pentagonal *)
h[n_]:=-y+(4x(u*n^2+v*n+w-z-d)+y^2)^(1/2);
a[n_]:=n+Floor[h[n]/(2x)];
k[n_]:=-v+(4u(x*n^2+y*n+z-w+d)+v^2)^(1/2);
b[n_]:=n+Floor[k[n]/(2u)];
Table[a[n],{n,1,100}] (* A186223 *)
Table[b[n],{n,1,100}] (* A186224 *)
A186225
Adjusted joint rank sequence of (f(i)) and (g(j)) with f(i) after g(j) when f(i)=g(j), where f and g are the triangular numbers and pentagonal numbers. Complement of A186226.
Original entry on oeis.org
2, 3, 5, 6, 8, 9, 11, 13, 14, 16, 17, 19, 20, 22, 24, 25, 27, 28, 30, 32, 33, 35, 36, 38, 39, 41, 43, 44, 46, 47, 49, 50, 52, 54, 55, 57, 58, 60, 61, 63, 65, 66, 68, 69, 71, 73, 74, 76, 77, 79, 80, 82, 84, 85, 87, 88, 90, 91, 93, 95, 96, 98, 99, 101, 102, 104, 106, 107, 109, 110, 112, 114, 115, 117, 118, 120, 121, 123, 125, 126, 128, 129, 131, 132, 134, 136, 137, 139, 140, 142, 143, 145, 147, 148, 150, 151, 153, 155, 156, 158
Offset: 1
-
(* Program for adjusted rank sequences as described at A186219 *)
d=-1/2; u=1/2; v=1/2; w=0; x=3/2; y=-1/2; z=0; (* triangular & pentagonal *)
h[n_]:=-y+(4x(u*n^2+v*n+w-z-d)+y^2)^(1/2);
a[n_]:=n+Floor[h[n]/(2x)];
k[n_]:=-v+(4u(x*n^2+y*n+z-w+d)+v^2)^(1/2);
b[n_]:=n+Floor[k[n]/(2u)];
Table[a[n],{n,1,100}] (* A186225 *)
Table[b[n],{n,1,100}] (* A186226 *)
Comments