cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A186187 Period 8 sequence [ 2, 2, 1, 2, 4, 2, 1, 2, ...] except a(0) = 1.

Original entry on oeis.org

1, 2, 1, 2, 4, 2, 1, 2, 2, 2, 1, 2, 4, 2, 1, 2, 2, 2, 1, 2, 4, 2, 1, 2, 2, 2, 1, 2, 4, 2, 1, 2, 2, 2, 1, 2, 4, 2, 1, 2, 2, 2, 1, 2, 4, 2, 1, 2, 2, 2, 1, 2, 4, 2, 1, 2, 2, 2, 1, 2, 4, 2, 1, 2, 2, 2, 1, 2, 4, 2, 1, 2, 2, 2, 1, 2, 4, 2, 1, 2, 2, 2, 1, 2, 4, 2, 1, 2, 2, 2, 1, 2, 4, 2, 1, 2, 2, 2, 1, 2, 4, 2, 1, 2, 2
Offset: 0

Views

Author

Michael Somos, Feb 14 2011

Keywords

Comments

Also continued fraction expansion of sqrt(2717)/38. - Bruno Berselli, Mar 07 2011

Examples

			1 + 2*x + x^2 + 2*x^3 + 4*x^4 + 2*x^5 + x^6 + 2*x^7 + 2*x^8 + 2*x^9 + ...
		

Programs

  • Magma
    [1] cat &cat[ [2, 1, 2, 4, 2, 1, 2, 2]: n in [1..13]];  // Bruno Berselli, Mar 07 2011
  • Mathematica
    PadRight[{1},108,{2,2,1,2,4,2,1,2}] (* Harvey P. Dale, Mar 22 2012 *)
  • PARI
    {a(n) = - (n==0) + [ 2, 2, 1, 2, 4, 2, 1, 2] [n%8 + 1]}
    
  • PARI
    {a(n) = polcoeff( (1 + x)^4 * (1 - x + x^2)^2 / (1 - x^8) + x * O(x^abs(n)), abs(n))}
    

Formula

Euler transform of length 8 sequence [ 2, -2, 2, 0, 0, -2, 0, 1].
Moebius transform is length 8 sequence [ 2, -1, 0, 3, 0, 0, 0, -2].
a(n) = 2 * b(n) where b() is multiplicative with b(2) = 1/2, b(4) = 2, b(2^e) = 1 if e>2, b(p^e) = 1 if p>2.
G.f.: (1 + x)^4 * (1 - x + x^2)^2 / (1 - x^8) = (1-x+x^2)^2*(1+x)^3 / ((1-x) *(1+x^2) *(1+x^4)). a(-n) = a(n). a(2*n + 1) = 2, a(4*n + 2) = 1, a(8*n + 4) = 4, a(8*n) = 2 except a(0) = 1.
a(n) = A056594(n)-A014017(n)+2 for n>0. - Bruno Berselli, Feb 15 2011