cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A186221 Adjusted joint rank sequence of (f(i)) and (g(j)) with f(i) after g(j) when f(i)=g(j), where f and g are the triangular numbers and squares. Complement of A186222.

Original entry on oeis.org

2, 3, 5, 7, 8, 10, 12, 14, 15, 17, 19, 20, 22, 24, 25, 27, 29, 31, 32, 34, 36, 37, 39, 41, 43, 44, 46, 48, 49, 51, 53, 54, 56, 58, 60, 61, 63, 65, 66, 68, 70, 72, 73, 75, 77, 78, 80, 82, 84, 85, 87, 89, 90, 92, 94, 95, 97, 99, 101, 102, 104, 106, 107, 109, 111, 113, 114, 116, 118, 119, 121, 123, 124, 126, 128, 130, 131, 133, 135, 136, 138, 140, 142, 143, 145, 147, 148, 150, 152, 153, 155, 157, 159, 160, 162, 164, 165, 167, 169, 171
Offset: 1

Views

Author

Clark Kimberling, Feb 15 2011

Keywords

Comments

See A186219.

Examples

			First, write
1..3...6..10..15...21..28..36..45...  (triangular)
1....4...9......16...25....36....49.. (square)
Replace each number by its rank, where ties are settled by ranking the triangular number after the square:
a=(2,3,5,7,8,10,12,14,...)
b=(1,4,6,9,11,13,16,18,...).
		

Crossrefs

Programs

  • Magma
    [n + Floor(Sqrt((n^2+n)/2 + 1/4)): n in [1..120]]; // G. C. Greubel, Aug 18 2018
  • Mathematica
    (* adjusted joint ranking; general formula *)
    d=-1/4; u=1/2; v=1/2; w=0; x=1; y=0; z=0;
    h[n_]:=-y+(4x(u*n^2+v*n+w-z-d)+y^2)^(1/2);
    a[n_]:=n+Floor[h[n]/(2x)];
    k[n_]:=-v+(4u(x*n^2+y*n+z-w+d)+v^2)^(1/2);
    b[n_]:=n+Floor[k[n]/(2u)];
    Table[a[n],{n,1,100}] (* A186221 *)
    Table[b[n],{n,1,100}] (* A186222 *)
    a[ n_] := n + Floor[ Sqrt[ n (n + 1)/2]]; (* Michael Somos, Aug 19 2018 *)
  • PARI
    vector(120, n, n + floor(sqrt((n^2+n)/2 + 1/4))) \\ G. C. Greubel, Aug 18 2018
    {a(n) = n + sqrtint( n * (n+1) \ 2)}; /* Michael Somos, Aug 19 2018 */
    

Formula

a(n) = n + floor(sqrt((n^2+n)/2 + 1/4)).
a(n) = A061288(n) - n for all n in Z. - Michael Somos, Aug 19 2018