A186283 Least number k such that k*n+1 is a prime dividing 2^n-1.
1, 2, 1, 6, 1, 18, 2, 8, 1, 2, 1, 630, 3, 2, 1, 7710, 1, 27594, 2, 6, 1, 2, 10, 24, 105, 9728, 1, 8, 1, 69273666, 8, 18166, 1285, 2, 1, 6, 4599, 2, 1, 326, 1, 10, 2, 14, 1, 50, 2, 90462791808, 5, 2, 1, 120, 1615, 16, 2, 568, 1, 3050, 1, 37800705069076950, 11545611, 2, 4, 126, 1, 2891160, 2, 145690999102, 1
Offset: 2
Keywords
Examples
For n=8, 2^n-1 = 255 = 3 * 5 * 17. The smallest prime factor of the form k*n+1 is 17 = 2*8+1. Hence, a(8) = 2.
References
- Kenneth H. Rosen, Elementary Number Theory and Its Applications, 3rd Ed, Theorem 6.12, p. 225
Links
- Max Alekseyev, Table of n, a(n) for n = 2..1236 (terms to a(300) from David A. Corneth)
- Will Edgington, Mersenne Page [from Internet Archive Wayback Machine]
- Eric W. Weisstein, MathWorld: Mersenne Number
- Eric W. Weisstein, MathWorld: Mersenne Prime
Programs
-
Mathematica
Table[p=First/@FactorInteger[2^n-1]; (Select[p, Mod[#1,n] == 1 &, 1][[1]] - 1)/n, {n, 2, 70}]
-
PARI
a(n) = {if(isprime(n+1),return(1)); my(f = factor(2^n - 1)[,1]); for(i=1,#f, if(f[i]%n == 1, return((f[i]-1) / n)))} \\ David A. Corneth, Sep 03 2017
Formula
a(n) = (A186522(n)-1)/n.
Comments