cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A186352 Adjusted joint rank sequence of (f(i)) and (g(j)) with f(i) after g(j) when f(i)=g(j), where f and g are the odd numbers and the triangular numbers. Complement of A186353.

Original entry on oeis.org

2, 4, 5, 7, 8, 10, 11, 13, 14, 15, 17, 18, 19, 20, 22, 23, 24, 25, 27, 28, 29, 30, 32, 33, 34, 35, 36, 38, 39, 40, 41, 42, 43, 45, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 59, 60, 61, 62, 63, 64, 65, 67, 68, 69, 70, 71, 72, 73, 74, 76, 77, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 100, 101, 102, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 137, 138, 139, 140, 141
Offset: 1

Views

Author

Clark Kimberling, Feb 18 2011

Keywords

Examples

			First, write
1..3..5..7..9..11..13..15..17..21..23.. (odds)
1..3....6.....10.......15......21.... (triangular)
Then replace each number by its rank, where ties are settled by ranking the odd number after the triangular:
a=(2,4,5,7,8,10,11,13,14,15,....)=A186352
b=(1,3,6,9,12,16,21,26,31,37,...)=A186353.
		

Crossrefs

Programs

  • Mathematica
    (* adjusted joint rank sequences a and b, using general formula for ranking 1st degree u*n+v and 2nd degree x*n^2+y*n+z *)
    d=-1/2; u=2; v=-1; x=1/2; y=1/2; (* odds and triangular *)
    h[n_]:=(-y+(4x(u*n+v-d)+y^2)^(1/2))/(2x);
    a[n_]:=n+Floor[h[n]]; (* rank of u*n+v *)
    k[n_]:=(x*n^2+y*n-v+d)/u;
    b[n_]:=n+Floor[k[n]]; (* rank of x*n^2+y*n+d *)
    Table[a[n], {n, 1, 120}]  (* A186352 *)
    Table[b[n], {n, 1, 100}]  (* A186353 *)

Formula

a(n)=n+floor(-1/2+sqrt(4n-3/4))=A186352(n).
b(n)=n+floor((n^2+n+1)/4)=A186353(n).

A186350 Adjusted joint rank sequence of (f(i)) and (g(j)) with f(i) before g(j) when f(i)=g(j), where f and g are the odd numbers and the triangular numbers. Complement of A186351.

Original entry on oeis.org

1, 3, 5, 7, 8, 10, 11, 12, 14, 15, 16, 18, 19, 20, 22, 23, 24, 25, 27, 28, 29, 30, 31, 33, 34, 35, 36, 37, 39, 40, 41, 42, 43, 45, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 76, 77, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 102, 103, 105, 106, 107, 108, 109, 110, 111, 112, 113, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 138, 139, 140, 141
Offset: 1

Views

Author

Clark Kimberling, Feb 18 2011

Keywords

Comments

Suppose that f and g are strictly increasing functions for which (f(i)) and (g(j)) are integer sequences. If 0<|d|<1, the sets F={f(i): i>=1} and G={g(j)+d: j>=1} are clearly disjoint. Let f^=(inverse of f) and g^=(inverse of g). When the numbers in F and G are jointly ranked, the rank of f(n) is a(n):=n+floor(g^(f(n))-d), and the rank of g(n)+d is b(n):=n+floor(f^(g(n))+d). Therefore, the sequences a and b are a complementary pair.
Although the sequences (f(i)) and (g(j)) may not be disjoint, the sequences (f(i)) and (g(j)+d) are disjoint, and this observation enables two types of adjusted joint rankings:
(1) if 0
Using f(i)=ui+v, g(j)=xj^2+yj+z, we find a and b given by
a(n)=n+floor((-y+sqrt(4x(un+v-d)+y^2))/(2x)),
b(n)=n+floor((xn^2+yn-v+d)/(2u))),
where a(n) is the rank of un+v and b(n) is the rank
xn^2+yn+z+d, and d must be chosen small enough, in
absolute value, that the sets F and G are disjoint.
Example: f=A000217 (odd numbers) and g=A000290 (triangular numbers) yield adjusted joint rank sequences a=A186350 and b=A186351 for d=1/2 and a=A186352 and b=A186353 for d=-1/2.
For other classes of adjusted joint rank sequences, see A186145 and A186219.

Examples

			First, write
1..3..5..7..9..11..13..15..17..21..23.. (odds)
1..3....6.....10.......15......21.... (triangular)
Then replace each number by its rank, where ties are settled by ranking the odd number before the triangjular:
a=(1,3,5,7,8,10,11,12,14,....)=A186350
b=(2,4,6,9,13,17,21,26,32,...)=A186351.
		

Crossrefs

A005408 (odd numbers), A000217 (triangular numbers).

Programs

  • Mathematica
    (* adjusted joint rank sequences a and b, using general formula for ranking 1st degree u*n+v and 2nd degree x*n^2+y*n+z *)
    d=1/2; u=2; v=-1; x=1/2; y=1/2; (* odds and triangular *)
    h[n_]:=(-y+(4x(u*n+v-d)+y^2)^(1/2))/(2x);
    a[n_]:=n+Floor[h[n]]; (* rank of u*n+v *)
    k[n_]:=(x*n^2+y*n-v+d)/u;
    b[n_]:=n+Floor[k[n]]; (* rank of x*n^2+y*n+d *)
    Table[a[n],{n,1,120}]  (* A186350 *)
    Table[b[n],{n,1,100}]  (* A186351 *)

Formula

a(n)=n+floor(-1/2+sqrt(4n-9/4))=A186350(n).
b(n)=n+floor((n^2+n+3)/4)=A186351(n).

A186351 Adjusted joint rank sequence of (f(i)) and (g(j)) with f(i) before g(j) when f(i)=g(j), where f and g are the odd numbers and the triangular numbers. Complement of A186350.

Original entry on oeis.org

2, 4, 6, 9, 13, 17, 21, 26, 32, 38, 44, 51, 59, 67, 75, 84, 94, 104, 114, 125, 137, 149, 161, 174, 188, 202, 216, 231, 247, 263, 279, 296, 314, 332, 350, 369, 389, 409, 429, 450, 472, 494, 516, 539, 563, 587, 611, 636, 662, 688, 714, 741, 769, 797, 825, 854, 884, 914, 944, 975, 1007, 1039, 1071, 1104, 1138, 1172, 1206, 1241, 1277, 1313, 1349, 1386, 1424, 1462, 1500
Offset: 1

Author

Clark Kimberling, Feb 18 2011

Keywords

Comments

See A186350.

Examples

			First, write
1..3..5..7..9..11..13..15..17..21..23.. (odds)
1..3....6.....10.......15......21.... (triangular)
Then replace each number by its rank, where ties are settled by ranking the odd number before the triangular:
a = (1,3,5,7,8,10,11,12,14,....) = A186350
b = (2,4,6,9,13,17,21,26,32,...) = A186351.
		

Crossrefs

Programs

Formula

See A186350.

A303273 Array T(n,k) = binomial(n, 2) + k*n + 1 read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 1, 3, 4, 4, 1, 4, 6, 7, 7, 1, 5, 8, 10, 11, 11, 1, 6, 10, 13, 15, 16, 16, 1, 7, 12, 16, 19, 21, 22, 22, 1, 8, 14, 19, 23, 26, 28, 29, 29, 1, 9, 16, 22, 27, 31, 34, 36, 37, 37, 1, 10, 18, 25, 31, 36, 40, 43, 45, 46, 46, 1, 11, 20, 28, 35, 41
Offset: 0

Author

Keywords

Comments

Columns are linear recurrence sequences with signature (3,-3,1).
8*T(n,k) + A166147(k-1) are squares.
Columns k are binomial transforms of [1, k, 1, 0, 0, 0, ...].
Antidiagonals sums yield A116731.

Examples

			The array T(n,k) begins
1    1    1    1    1    1    1    1    1    1    1    1    1  ...  A000012
1    2    3    4    5    6    7    8    9   10   11   12   13  ...  A000027
2    4    6    8   10   12   14   16   18   20   22   24   26  ...  A005843
4    7   10   13   16   19   22   25   28   31   34   37   40  ...  A016777
7   11   15   19   23   27   31   35   39   43   47   51   55  ...  A004767
11  16   21   26   31   36   41   46   51   56   61   66   71  ...  A016861
16  22   28   34   40   46   52   58   64   70   76   82   88  ...  A016957
22  29   36   43   50   57   64   71   78   85   92   99  106  ...  A016993
29  37   45   53   61   69   77   85   93  101  109  117  125  ...  A004770
37  46   55   64   73   82   91  100  109  118  127  136  145  ...  A017173
46  56   66   76   86   96  106  116  126  136  146  156  166  ...  A017341
56  67   78   89  100  111  122  133  144  155  166  177  188  ...  A017401
67  79   91  103  115  127  139  151  163  175  187  199  211  ...  A017605
79  92  105  118  131  144  157  170  183  196  209  222  235  ...  A190991
...
The inverse binomial transforms of the columns are
1    1    1    1    1    1    1    1    1    1    1    1    1  ...
0    1    2    3    4    5    6    7    8    9   10   11   12  ...
1    1    1    1    1    1    1    1    1    1    1    1    1  ...
0    0    0    0    0    0    0    0    0    0    0    0    0  ...
0    0    0    0    0    0    0    0    0    0    0    0    0  ...
0    0    0    0    0    0    0    0    0    0    0    0    0  ...
...
T(k,n-k) = A087401(n,k) + 1 as triangle
1
1   1
1   2   2
1   3   4   4
1   4   6   7   7
1   5   8  10  11  11
1   6  10  13  15  16  16
1   7  12  16  19  21  22  22
1   8  14  19  23  26  28  29  29
1   9  16  22  27  31  34  36  37  37
1  10  18  25  31  36  40  43  45  46  46
...
		

References

  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics: A Foundation for Computer Science, Addison-Wesley, 1994.

Programs

  • Maple
    T := (n, k) -> binomial(n, 2) + k*n + 1;
    for n from 0 to 20 do seq(T(n, k), k = 0 .. 20) od;
  • Mathematica
    Table[With[{n = m - k}, Binomial[n, 2] + k n + 1], {m, 0, 11}, {k, m, 0, -1}] // Flatten (* Michael De Vlieger, Apr 21 2018 *)
  • Maxima
    T(n, k) := binomial(n, 2)+ k*n + 1$
    for n:0 thru 20 do
        print(makelist(T(n, k), k, 0, 20));
    
  • PARI
    T(n,k) = binomial(n, 2) + k*n + 1;
    tabl(nn) = for (n=0, nn, for (k=0, nn, print1(T(n, k), ", ")); print); \\ Michel Marcus, May 17 2018

Formula

G.f.: (3*x^2*y - 3*x*y + y - 2*x^2 + 2*x - 1)/((x - 1)^3*(y - 1)^2).
E.g.f.: (1/2)*(2*x*y + x^2 + 2)*exp(y + x).
T(n,k) = 3*T(n-1,k) - 3*T(n-2,k) + T(n-3,k), with T(0,k) = 1, T(1,k) = k + 1 and T(2,k) = 2*k + 2.
T(n,k) = T(n-1,k) + n + k - 1.
T(n,k) = T(n,k-1) + n, with T(n,0) = 1.
T(n,0) = A152947(n+1).
T(n,1) = A000124(n).
T(n,2) = A000217(n).
T(n,3) = A034856(n+1).
T(n,4) = A052905(n).
T(n,5) = A051936(n+4).
T(n,6) = A246172(n+1).
T(n,7) = A302537(n).
T(n,8) = A056121(n+1) + 1.
T(n,9) = A056126(n+1) + 1.
T(n,10) = A051942(n+10) + 1, n > 0.
T(n,11) = A101859(n) + 1.
T(n,12) = A132754(n+1) + 1.
T(n,13) = A132755(n+1) + 1.
T(n,14) = A132756(n+1) + 1.
T(n,15) = A132757(n+1) + 1.
T(n,16) = A132758(n+1) + 1.
T(n,17) = A212427(n+1) + 1.
T(n,18) = A212428(n+1) + 1.
T(n,n) = A143689(n) = A300192(n,2).
T(n,n+1) = A104249(n).
T(n,n+2) = T(n+1,n) = A005448(n+1).
T(n,n+3) = A000326(n+1).
T(n,n+4) = A095794(n+1).
T(n,n+5) = A133694(n+1).
T(n+2,n) = A005449(n+1).
T(n+3,n) = A115067(n+2).
T(n+4,n) = A133694(n+2).
T(2*n,n) = A054556(n+1).
T(2*n,n+1) = A054567(n+1).
T(2*n,n+2) = A033951(n).
T(2*n,n+3) = A001107(n+1).
T(2*n,n+4) = A186353(4*n+1) (conjectured).
T(2*n,n+5) = A184103(8*n+1) (conjectured).
T(2*n,n+6) = A250657(n-1) = A250656(3,n-1), n > 1.
T(n,2*n) = A140066(n+1).
T(n+1,2*n) = A005891(n).
T(n+2,2*n) = A249013(5*n+4) (conjectured).
T(n+3,2*n) = A186384(5*n+3) = A186386(5*n+3) (conjectured).
T(2*n,2*n) = A143689(2*n).
T(2*n+1,2*n+1) = A143689(2*n+1) (= A030503(3*n+3) (conjectured)).
T(2*n,2*n+1) = A104249(2*n) = A093918(2*n+2) = A131355(4*n+1) (= A030503(3*n+5) (conjectured)).
T(2*n+1,2*n) = A085473(n).
a(n+1,5*n+1)=A051865(n+1) + 1.
a(n,2*n+1) = A116668(n).
a(2*n+1,n) = A054569(n+1).
T(3*n,n) = A025742(3*n-1), n > 1 (conjectured).
T(n,3*n) = A140063(n+1).
T(n+1,3*n) = A069099(n+1).
T(n,4*n) = A276819(n).
T(4*n,n) = A154106(n-1), n > 0.
T(2^n,2) = A028401(n+2).
T(1,n)*T(n,1) = A006000(n).
T(n*(n+1),n) = A211905(n+1), n > 0 (conjectured).
T(n*(n+1)+1,n) = A294259(n+1).
T(n,n^2+1) = A081423(n).
T(n,A000217(n)) = A158842(n), n > 0.
T(n,A152947(n+1)) = A060354(n+1).
floor(T(n,n/2)) = A267682(n) (conjectured).
floor(T(n,n/3)) = A025742(n-1), n > 0 (conjectured).
floor(T(n,n/4)) = A263807(n-1), n > 0 (conjectured).
ceiling(T(n,2^n)/n) = A134522(n), n > 0 (conjectured).
ceiling(T(n,n/2+n)/n) = A051755(n+1) (conjectured).
floor(T(n,n)/n) = A133223(n), n > 0 (conjectured).
ceiling(T(n,n)/n) = A007494(n), n > 0.
ceiling(T(n,n^2)/n) = A171769(n), n > 0.
ceiling(T(2*n,n^2)/n) = A046092(n), n > 0.
ceiling(T(2*n,2^n)/n) = A131520(n+2), n > 0.
Showing 1-4 of 4 results.