A186375 a(n) equals the sum of the squares of the expansion coefficients for (x + y + 2*z)^n.
1, 6, 54, 588, 7110, 91476, 1224636, 16849944, 236523078, 3371140740, 48630906324, 708412918824, 10403176168476, 153813188724552, 2287366047735480, 34185974267420208, 513159651195396678, 7732530110414488932
Offset: 0
Keywords
Examples
G.f.: A(x) = 1 + 6*x + 54*x^2/2!^2 + 588*x^3/3!^2 + 7110*x^4/4!^2 + ... The g.f. may be expressed as: A(x) = [Sum_{n>=0} x^n/n!^2]^2 *[Sum_{n>=0} (4x)^n/n!^2] where [Sum_{n>=0} x^n/n!^2]^2 = 1 + 2*x + 6*x^2/2!^2 + 20*x^3/3!^2 + 70*x^4/4!^2 + ... + (2n)!/n!^2 *x^n/n!^2 + ... a(4) = 256 + 1024 + 1024 + 576 + 2304 + 576 + 64 + 576 + 576 + 64 + 1 + 16 + 36 + 16 + 1 = 7110.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- E. Weisstein, Goursat's Surface, Mathworld--A Wolfram Web Resource.
Programs
-
Maple
A186375 := n -> 4^n*hypergeom([1/2,-n,-n], [1,1], 1): seq(simplify(A186375(n)), n=0..17); # Peter Luschny, May 24 2017
-
Mathematica
Table[Sum[Binomial[n,k]^2*Binomial[2k,k]*4^(n-k),{k,0,n}],{n,0,20}] (* Vaclav Kotesovec, Oct 20 2012 *) (* From Bradley Klee, Aug 22 2018: Start *)PyramidLevel[n_]:=If[n==0, {{1}}, Table[Coefficient[(2*x+y+z)^n,x^j*y^k*z^(n-j-k)]^2, {j,0,n}, {k,0,n-j}]]; a1[n_]:= Total[Flatten[PyramidLevel[n]]]; a1 /@ Range[0, 10] RecurrenceTable[{4*(4*n-5)*(4*n-3)*a[n-2]-2*(10*n^2-10*n+3)*a[n-1]+n^2*a[n]==0, a[0]==1, a[1]==6},a,{n,0,1000}] (* End *) a[ n_] := If[ n < 0, 0, Block[ {x, y, z}, Expand[ (x + y + 2 z)^n] /. {t_Integer -> t^2, x -> 1, y -> 1, z -> 1}]]; (* Michael Somos, Aug 27 2018 *)
-
PARI
{a(n)=sum(k=0,n,binomial(n,k)^2*binomial(2*(n-k),n-k)*4^k)}
-
PARI
{a(n)=n!^2*polcoeff(sum(m=0,n,x^m/m!^2)^2*sum(m=0,n,(2^2*x)^m/m!^2),n)}
-
PARI
{a(n)=local(V=Vec((1+2*x+x^(n+2))^n));V*V~}
Formula
(1) a(n) = Sum_{k=0..n} C(n,k)^2*C(2k,k)*4^(n-k).
Let g.f. A(x) = Sum_{n>=0} a(n)*x^n/n!^2, then
(2) A(x) = B(x)^2 * B(2^2*x)
where B(x) = Sum_{n>=0} x^n/n!^2 = BesselI(0, 2*sqrt(x)).
Recurrence: n^2*a(n) = 2*(10*n^2-10*n+3)*a(n-1) - 4*(4*n-5)*(4*n-3)*a(n-2). - Vaclav Kotesovec, Oct 20 2012
a(n) ~ 2^(4*n+1/2)/(Pi*n). - Vaclav Kotesovec, Oct 20 2012
a(n) = 4^n*hypergeom([1/2,-n,-n], [1,1], 1). - Peter Luschny, May 24 2017
G.f.: G(x)=Sum_{n>=0}a(n)x^n, 6*(10*x-1)*G + (192*x^2-40*x+1)*G' + x*(16*x-1)*(4*x-1)*G''=0. - Bradley Klee, Aug 22 2018
Extensions
Name edited by Bradley Klee, Aug 22 2018
Comments