A318245
Scaled g.f. T(v) = Sum_{n>=0} a(n)*(3*v/64)^n satisfies 9*(5*v-4)*T + d/dv(16*v*(v-1)*(3*v-4)*T') = 0, and a(0)=1; sequence gives a(n).
Original entry on oeis.org
1, 12, 180, 2928, 49860, 875952, 15754704, 288722880, 5373771876, 101334517680, 1932405892560, 37208369165760, 722497419680400, 14132680228175040, 278236490874120000, 5508974545258860288, 109624581377872629156, 2191185332414847848880, 43971545517545956240464
Offset: 0
Period function T_{O}(w): Take T_{C3}(u) and T_{C4}(v) from A186375 and A318245 respectively. Set (u,v)=(w-2/3,2-w), with u in [0,1/3], v in [0,1], and w in [2/3,2]. Define piecewise function T_{O}(w) = T_{C3}(w-2/3) if w in [2/3,1] or T_{O}(w) = T_{C4}(2-w) if w in [1,2].
Geometric Singular Points: Construct a family of algebraic sphere curves by intersecting a sphere 1=X^2+Y^2+Z^2 with the octahedral surface w=2*(X^4+Y^4+Z^4). Four cube vertex axes--(x+y+z, -x+y+z, x-y+z, x+y-z)--intersect the sphere in eight circular points with w=2/3. Three octahedron vertex axes--(x, y, z)--intersect the sphere in six circular points with w=2. Six cuboctahedron vertex axes--(x+y, x-y, y+z, y-z, z+x, z-x)--intersect the sphere in twelve hyperbolic points with w=1.
- W. G. Harter and C. W. Patterson, Rotational energy surfaces and high-J eigenvalue structure of polyatomic molecules, The Journal of Chemical Physics, 80 (1984), 4252.
- S. Herfurtner, Elliptic surfaces with four singular fibres, Mathematische Annalen, 1991. Preprint.
- Bradley Klee, Proof Certificate.
- Bradley Klee, Checking Weierstrass data, 2023.
- Eric Weisstein's World of Mathematics, Goursat's Surface.
-
CoefficientList[Expand[Normal@Series[Divide[Sqrt[S],Sqrt[1-4*S*x]*Sqrt[S-8 + 8*Sqrt[1-4*S*x]]], {x, 0, 13}]/.{S->12+4*Q^2}]/.{Q^n_:>(1/2)^n*Binomial[n, n/2]} /.{x->1/3*x}, x]
RecurrenceTable[{3*n^2*a[n] - 4*(28*n^2-28*n+9)*a[n-1] + 64*(4*n-5)*(4*n-3)*a[n-2] == 0, a[0]==1, a[1]==12}, a, {n,0,1000}]
A186378
a(n) equals the least sum of the squares of the coefficients in ((1 + x^k)^2 + x^p)^n found at sufficiently large p for some fixed k>0.
Original entry on oeis.org
1, 7, 95, 1609, 30271, 606057, 12636689, 271026455, 5934011839, 131978406553, 2971793928145, 67586972435495, 1549805136840625, 35783848365934663, 831089570101489423, 19400246240227360809, 454864027237803296703
Offset: 0
G.f.: A(x) = 1 + 7*x + 95*x^2/2!^2 + 1609*x^3/3!^2 + 30271*x^4/4!^2 +...
The g.f. may be expressed as:
A(x) = C(x) * BesselI(0, 2*sqrt(x)) where
C(x)= 1 + 6*x + 70*x^2/2!^2 + 924*x^3/3!^2 + 12870*x^4/4!^2 +...+ (4n)!/(2n)!^2*x^n/n!^2
-
Table[Sum[Binomial[n,k]^2 * Binomial[4*k,2*k], {k,0,n}], {n,0,20}] (* Vaclav Kotesovec, Feb 11 2015 *)
-
{a(n)=local(V=Vec((1+2*x+x^2+x^(2*n+3))^n));V*V~}
-
{a(n)=sum(k=0,n,binomial(n,k)^2*(4*k)!/(2*k)!^2)}
-
{a(n)=n!^2*polcoeff(sum(m=0,n,(4*m)!/(2*m)!^2*x^m/m!^2)*sum(m=0,n,x^m/m!^2+x*O(x^n)),n)}
A186376
a(n) is the sum of the squares of the coefficients of (x + 2*y + 3*z)^n.
Original entry on oeis.org
1, 14, 294, 7292, 198310, 5717124, 171485916, 5290989816, 166688596998, 5335746337460, 172951272017524, 5662840724506056, 186960502253087836, 6215612039963043368, 207865952390729881080, 6987002286567227550192
Offset: 0
G.f.: A(x) = 1 + 14*x + 294*x^2/2!^2 + 7292*x^3/3!^2 +...
The g.f. may be expressed as:
[Sum_{n>=0}x^n/n!^2]*[Sum_{n>=0}(4x)^n/n!^2]*[Sum_{n>=0}(9x)^n/n!^2].
-
Table[Sum[Binomial[n,k]^2 * Sum[Binomial[k,j]^2 * 4^(k-j) * 9^j, {j,0,k}], {k,0,n}], {n,0,20}] (* Vaclav Kotesovec, Feb 11 2015 *)
a[ n_] := If[ n < 0, 0, Block[ {x, y, z}, Expand[(x + y + 2 z)^n] /. {t_Integer -> t^2, x -> 1, y -> 2, z -> 3}]]; (* Michael Somos, Aug 25 2018 *)
-
{a(n)=local(V=Vec((1+2*x+3*x^(n+2))^n));V*V~}
-
{a(n)=sum(k=0,n,binomial(n,k)^2*sum(j=0,k,binomial(k,j)^2*4^(k-j)*9^j))}
-
{a(n)=n!^2*polcoeff(sum(m=0,n,x^m/m!^2)*sum(m=0,n,(2^2*x)^m/m!^2)*sum(m=0,n,(3^2*x)^m/m!^2),n)}
A186377
a(n) equals the least sum of the squares of the coefficients in (1 + 2*x^k + x^p + x^q)^n found at sufficiently large p and q>(n+1)p for some fixed k>0.
Original entry on oeis.org
1, 7, 79, 1129, 18559, 333577, 6365089, 126652183, 2598628543, 54577439833, 1167481074529, 25346459683783, 557042221952881, 12368307313680871, 277027947337574911, 6251808554314780009, 142015508983550880703
Offset: 0
G.f.: A(x) = 1 + 7*x + 79*x^2/2!^2 + 1129*x^3/3!^2 + 18559*x^4/4!^2 +...
The g.f. may be expressed as:
A(x) = [Sum_{n>=0} x^n/n!^2]^3 *[Sum_{n>=0} (4x)^n/n!^2] where
[Sum_{n>=0} x^n/n!^2]^3 = 1 + 3*x + 15*x^2/2!^2 + 93*x^3/3!^2 + 639*x^4/4!^2 + 4653*x^5/5!^2 +...+ A002893(n)*x^n/n!^2 +...
-
Table[Sum[Binomial[n,k]^2 * 4^(n-k) *Sum[Binomial[k,j]^2 * Binomial[2j,j], {j,0,k}], {k,0,n}], {n,0,20}] (* Vaclav Kotesovec, Feb 11 2015 *)
-
{a(n)=local(V=Vec((1+2*x+x^(n+2)+x^(n^2+2*n+3))^n));V*V~}
-
{a(n)=sum(k=0,n,binomial(n,k)^2*4^(n-k)*sum(j=0,k,binomial(k,j)^2*binomial(2*j,j)))}
-
{a(n)=n!^2*polcoeff(sum(m=0,n,x^m/m!^2)^3*sum(m=0,n,(2^2*x)^m/m!^2),n)}
A318495
Scaled g.f. T(u) = Sum_{n>=0} a(n)*(u/16)^n satisfies 5*(21*u-16)*T + d/du( 4*u*(u-1)*(27*u-32)*T') = 0, and a(0)=1; sequence gives a(n).
Original entry on oeis.org
1, 10, 120, 1540, 20500, 279480, 3876600, 54496200, 774468900, 11107261000, 160553895040, 2336799457200, 34219387524400, 503846306168800, 7455357525594000, 110811908027490960, 1653792126235140900, 24774309852363829800, 372404448149589213600
Offset: 0
Period function T_{I}(w): Take T_{C5}(u) and T_{C3}(v) from A318495 and A318496 respectively. Set (u,v)=(1-w,w+5/27), with u in [0,1], v in [0,5/27], and w in [-5/27,1]. Define piecewise function T_{I}(w) = T_{C5}(1-w) if w in [0,1] or T_{I}(w) = T_{C3}(w+5/27) if w in [-5/27,0].
Geometric Singular Points: Construct a family of algebraic sphere curves by intersecting a sphere 1=X^2+Y^2+Z^2 with the icosahedral surface w=Z^6 - 5*(X^2+Y^2)*Z^4 + 5*(X^2+Y^2)^2*Z^2 - 2*(X^4-10*X^2*Y^2+5*Y^4)*X*Z. Six icosahedron vertex axes intersect the sphere in twelve circular points with w=1. Ten dodecahedron vertex axes intersect the sphere in twenty circular points with w=-5/27. Fifteen icosidodecahedron vertex axes intersect the sphere in thirty hyperbolic points with w=0.
- É. Goursat, Étude des surfaces qui admettent tous les plans de symétrie d'un polyèdre régulier, Annales scientifiques de l'École Normale Supérieure, Série 3 : Volume 4 (1887), 166-170.
- W. G. Harter and D. E. Weeks, Rotation-vibration spectra of icosahedral molecules. I. Icosahedral symmetry analysis and fine structure, Journal of Chemical Physics, 90 (1989), 4370.
- S. Herfurtner, Elliptic surfaces with four singular fibres, Mathematische Annalen, 1991. Preprint.
- Bradley Klee, Proof Certificate.
- Bradley Klee, Checking Weierstrass data, 2023.
- O. Laporte, Polyhedral Harmonics, Zeitschrift für Naturforschung A, 8-11 (1948), 450.
-
a:=[1,10];; for n in [3..20] do a[n]:=(1/(2*(n-1)^2))*(( (59*(n^2-3*n+2)+20)*a[n-1]-(12*(6*n-13)*(6*n-11))*a[n-2])); od; a; # Muniru A Asiru, Sep 24 2018
-
RecurrenceTable[{2 n^2 a[n] - (59 n^2 - 59 n + 20) a[n - 1] + 12 (6 n - 7) (6 n - 5) a[n - 2] == 0, a[0] == 1, a[1] == 10}, a, {n, 0, 1000}]
A318496
Scaled g.f. T(v) = Sum_{n>=0} a(n)*(v/16)^n satisfies 15*(189*v-80)*T + d/dv(4*v*(27*v-5)*(27*v-32)*T') = 0, and a(0)=1; sequence gives a(n).
Original entry on oeis.org
1, 30, 1440, 85260, 5606100, 391231080, 28360117800, 2110794125400, 160187289344100, 12339496371120600, 961855480344860640, 75700880007230883600, 6005580964527420946800, 479651805879329497831200, 38529018420812424368031600, 3110295017383730347887664560
Offset: 0
-
a:=[1,30];; for n in [3..20] do a[n]:=(1/(10*(n-1)^2))*(3*(333*(n^2-3*n+2)+100)*a[n-1]-(324*(6*n-13)*(6*n-11)*a[n-2])); od; a; # Muniru A Asiru, Sep 24 2018
-
RecurrenceTable[{10 n^2 a[n] - 3 (333 n^2 - 333 n + 100) a[n-1] + 324 (6*n - 7) (6 n - 5) a[n-2] == 0, a[0] == 1, a[1] == 30}, a, {n, 0, 15}]
Showing 1-6 of 6 results.
Comments