A186375
a(n) equals the sum of the squares of the expansion coefficients for (x + y + 2*z)^n.
Original entry on oeis.org
1, 6, 54, 588, 7110, 91476, 1224636, 16849944, 236523078, 3371140740, 48630906324, 708412918824, 10403176168476, 153813188724552, 2287366047735480, 34185974267420208, 513159651195396678, 7732530110414488932
Offset: 0
G.f.: A(x) = 1 + 6*x + 54*x^2/2!^2 + 588*x^3/3!^2 + 7110*x^4/4!^2 + ...
The g.f. may be expressed as:
A(x) = [Sum_{n>=0} x^n/n!^2]^2 *[Sum_{n>=0} (4x)^n/n!^2] where
[Sum_{n>=0} x^n/n!^2]^2 = 1 + 2*x + 6*x^2/2!^2 + 20*x^3/3!^2 + 70*x^4/4!^2 + ... + (2n)!/n!^2 *x^n/n!^2 + ...
a(4) = 256
+ 1024 + 1024
+ 576 + 2304 + 576
+ 64 + 576 + 576 + 64
+ 1 + 16 + 36 + 16 + 1 = 7110.
-
A186375 := n -> 4^n*hypergeom([1/2,-n,-n], [1,1], 1):
seq(simplify(A186375(n)), n=0..17); # Peter Luschny, May 24 2017
-
Table[Sum[Binomial[n,k]^2*Binomial[2k,k]*4^(n-k),{k,0,n}],{n,0,20}] (* Vaclav Kotesovec, Oct 20 2012 *)
(* From Bradley Klee, Aug 22 2018: Start *)PyramidLevel[n_]:=If[n==0, {{1}}, Table[Coefficient[(2*x+y+z)^n,x^j*y^k*z^(n-j-k)]^2, {j,0,n}, {k,0,n-j}]]; a1[n_]:= Total[Flatten[PyramidLevel[n]]];
a1 /@ Range[0, 10]
RecurrenceTable[{4*(4*n-5)*(4*n-3)*a[n-2]-2*(10*n^2-10*n+3)*a[n-1]+n^2*a[n]==0, a[0]==1, a[1]==6},a,{n,0,1000}] (* End *)
a[ n_] := If[ n < 0, 0, Block[ {x, y, z}, Expand[ (x + y + 2 z)^n] /. {t_Integer -> t^2, x -> 1, y -> 1, z -> 1}]]; (* Michael Somos, Aug 27 2018 *)
-
{a(n)=sum(k=0,n,binomial(n,k)^2*binomial(2*(n-k),n-k)*4^k)}
-
{a(n)=n!^2*polcoeff(sum(m=0,n,x^m/m!^2)^2*sum(m=0,n,(2^2*x)^m/m!^2),n)}
-
{a(n)=local(V=Vec((1+2*x+x^(n+2))^n));V*V~}
A186376
a(n) is the sum of the squares of the coefficients of (x + 2*y + 3*z)^n.
Original entry on oeis.org
1, 14, 294, 7292, 198310, 5717124, 171485916, 5290989816, 166688596998, 5335746337460, 172951272017524, 5662840724506056, 186960502253087836, 6215612039963043368, 207865952390729881080, 6987002286567227550192
Offset: 0
G.f.: A(x) = 1 + 14*x + 294*x^2/2!^2 + 7292*x^3/3!^2 +...
The g.f. may be expressed as:
[Sum_{n>=0}x^n/n!^2]*[Sum_{n>=0}(4x)^n/n!^2]*[Sum_{n>=0}(9x)^n/n!^2].
-
Table[Sum[Binomial[n,k]^2 * Sum[Binomial[k,j]^2 * 4^(k-j) * 9^j, {j,0,k}], {k,0,n}], {n,0,20}] (* Vaclav Kotesovec, Feb 11 2015 *)
a[ n_] := If[ n < 0, 0, Block[ {x, y, z}, Expand[(x + y + 2 z)^n] /. {t_Integer -> t^2, x -> 1, y -> 2, z -> 3}]]; (* Michael Somos, Aug 25 2018 *)
-
{a(n)=local(V=Vec((1+2*x+3*x^(n+2))^n));V*V~}
-
{a(n)=sum(k=0,n,binomial(n,k)^2*sum(j=0,k,binomial(k,j)^2*4^(k-j)*9^j))}
-
{a(n)=n!^2*polcoeff(sum(m=0,n,x^m/m!^2)*sum(m=0,n,(2^2*x)^m/m!^2)*sum(m=0,n,(3^2*x)^m/m!^2),n)}
A186377
a(n) equals the least sum of the squares of the coefficients in (1 + 2*x^k + x^p + x^q)^n found at sufficiently large p and q>(n+1)p for some fixed k>0.
Original entry on oeis.org
1, 7, 79, 1129, 18559, 333577, 6365089, 126652183, 2598628543, 54577439833, 1167481074529, 25346459683783, 557042221952881, 12368307313680871, 277027947337574911, 6251808554314780009, 142015508983550880703
Offset: 0
G.f.: A(x) = 1 + 7*x + 79*x^2/2!^2 + 1129*x^3/3!^2 + 18559*x^4/4!^2 +...
The g.f. may be expressed as:
A(x) = [Sum_{n>=0} x^n/n!^2]^3 *[Sum_{n>=0} (4x)^n/n!^2] where
[Sum_{n>=0} x^n/n!^2]^3 = 1 + 3*x + 15*x^2/2!^2 + 93*x^3/3!^2 + 639*x^4/4!^2 + 4653*x^5/5!^2 +...+ A002893(n)*x^n/n!^2 +...
-
Table[Sum[Binomial[n,k]^2 * 4^(n-k) *Sum[Binomial[k,j]^2 * Binomial[2j,j], {j,0,k}], {k,0,n}], {n,0,20}] (* Vaclav Kotesovec, Feb 11 2015 *)
-
{a(n)=local(V=Vec((1+2*x+x^(n+2)+x^(n^2+2*n+3))^n));V*V~}
-
{a(n)=sum(k=0,n,binomial(n,k)^2*4^(n-k)*sum(j=0,k,binomial(k,j)^2*binomial(2*j,j)))}
-
{a(n)=n!^2*polcoeff(sum(m=0,n,x^m/m!^2)^3*sum(m=0,n,(2^2*x)^m/m!^2),n)}
A186391
a(n) equals the least sum of the squares of the coefficients in (1 + x^k + x^(2k) + x^p)^n found at sufficiently large p for some fixed k>0.
Original entry on oeis.org
1, 4, 32, 340, 4096, 52704, 705956, 9717488, 136443904, 1945097296, 28063032832, 408836809088, 6004266204964, 88779091937488, 1320294416004736, 19733192546306640, 296219343194357760, 4463668854432401280
Offset: 0
G.f.: A(x) = 1 + 4*x + 32*x^2/2!^2 + 340*x^3/3!^2 + 4096*x^4/4!^2 +...
The g.f. may be expressed as:
A(x) = [Sum_{n>=0} x^n/n!^2] * C(x) where
C(x)= 1 + 3*x + 19*x^2/2!^2 + 141*x^3/3!^2 + 1107*x^4/4!^2 + 8953*x^5/5!^2 + 73789*x^6/6!^2 +...+ A082758(n)*x^n/n!^2 +...
-
Table[Sum[Binomial[n,k]^2 * Sum[Binomial[2*k-j,j] * Binomial[2*k, j], {j,0,k}], {k,0,n}], {n,0,20}] (* Vaclav Kotesovec, Feb 11 2015 *)
-
{a(n)=local(V=Vec((1+x+x^2+x^(2*n+3))^n)); V*V~}
-
{a(n)=sum(k=0,n,binomial(n,k)^2*sum(j=0, k, binomial(2*k-j, j)*binomial(2*k, j)))}
-
{a(n)=n!^2*polcoeff(sum(m=0, n, x^m/m!^2+x*O(x^n)) *sum(m=0, n, sum(k=0, m, binomial(2*m-k, k)*binomial(2*m, k))*x^m/m!^2), n)}
A186392
a(n) equals the least sum of the squares of the coefficients in ((1 + x^k)^3 + x^p)^n found at sufficiently large p for some fixed k>0.
Original entry on oeis.org
1, 21, 1005, 57117, 3515661, 227676321, 15287457741, 1054718889525, 74310865827597, 5323117605120273, 386421018984886905, 28357462296640927845, 2099749565250183356973, 156648556486910137353777
Offset: 0
G.f.: A(x) = 1 + 21*x + 1005*x^2/2!^2 + 57117*x^3/3!^2 + 3515661*x^4/4!^2 +...
The g.f. may be expressed as:
A(x) = [Sum_{n>=0} x^n/n!^2] * C(x) where
C(x)= 1 + 20*x + 924*x^2/2!^2 + 48620*x^3/3!^2 + 2704156*x^4/4!^2 +...+ (6n)!/(3n)!^2*x^n/n!^2 +...
-
Table[Sum[Binomial[n,k]^2 * Binomial[6*k,3*k], {k,0,n}], {n,0,20}] (* Vaclav Kotesovec, Feb 11 2015 *)
-
{a(n)=sum(k=0,n,binomial(n,k)^2*(6*k)!/(3*k)!^2)}
-
{a(n)=n!^2*polcoeff(sum(m=0, n, (6*m)!/(3*m)!^2*x^m/m!^2)*sum(m=0, n, x^m/m!^2+x*O(x^n)), n)}
-
{a(n)=local(V=Vec(((1+x)^3+x^(3*n+4))^n)); V*V~}
Showing 1-5 of 5 results.
Comments