cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A006480 De Bruijn's S(3,n): (3n)!/(n!)^3.

Original entry on oeis.org

1, 6, 90, 1680, 34650, 756756, 17153136, 399072960, 9465511770, 227873431500, 5550996791340, 136526995463040, 3384731762521200, 84478098072866400, 2120572665910728000, 53494979785374631680, 1355345464406015082330, 34469858696831179429500, 879619727485803060256500, 22514366432046593564460000
Offset: 0

Views

Author

Keywords

Comments

Number of paths of length 3n in an n X n X n grid from (0,0,0) to (n,n,n), using steps (0,0,1), (0,1,0), and (1,0,0).
Appears in Ramanujan's theory of elliptic functions of signature 3.
S(s,n) = Sum_{k=0..2n} (-1)^(k+n) * binomial(2n, k)^s. The formula S(3,n) = (3n)!/(n!)^3 is due to Dixon (according to W. N. Bailey 1935). - Charles R Greathouse IV, Dec 28 2011
a(n) is the number of ballot results that end in a 3-way tie when 3n voters each cast two votes for two out of three candidates vying for 2 slots on a county board; in such a tie, each of the three candidates receives 2n votes. Note there are C(3n,2n) ways to choose the voters who cast a vote for the youngest candidate. The n voters who did note vote for the youngest candidate voted for the two older candidates. Then there are C(2n,n) ways to choose the other n voters who voted for both the youngest and the second youngest candidate. The remaining voters vote for the oldest candidate. Hence there are C(3n,2n)*C(2n,n)=(3n)!/(n!)^3 ballot results. - Dennis P. Walsh, May 02 2013
a(n) is the constant term of (X+Y+1/(X*Y))^(3*n). - Mark van Hoeij, May 07 2013
For n > 2 a(n) is divisible by (n+2)*(n+1)^2, a(n) = (n+1)^2*(n+2)*A161581(n). - Alexander Adamchuk, Dec 27 2013
a(n) is the number of permutations of the multiset {1^n, 2^n, 3^n}, the number of ternary words of length 3*n with n of each letters. - Joerg Arndt, Feb 28 2016
Diagonal of the rational function 1/(1 - x - y - z). - Gheorghe Coserea, Jul 06 2016
At least two families of elliptic curves, x = 2*H1 = (p^2+q^2)*(1-q) and x = 2*H2 = p^2+q^2-3*p^2*q+q^3 (0Bradley Klee, Feb 25 2018
The ordinary generating function also determines periods along a family of tetrahedral-symmetric sphere curves ("du troisième ordre"). Compare links to Goursat "Étude des surfaces..." and "Proof Certificate". - Bradley Klee, Sep 28 2018

Examples

			G.f.: 1 + 6*x + 90*x^2 + 1680*x^3 + 34650*x^4 + 756756*x^5 + 17153136*x^6 + ...
		

References

  • L. A. Aizenberg and A. P. Yuzhakov, "Integral representations and residues in multidimensional complex analysis", American Mathematical Society, 1983, p. 194.
  • Louis Comtet, Advanced Combinatorics, Reidel, 1974, p. 174.
  • N. G. de Bruijn, Asymptotic Methods in Analysis, North-Holland Publishing Co., 1958. See chapters 4 and 6.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Row 3 of A187783.
Related to diagonal of rational functions: A268545-A268555. Elliptic Integrals: A002894, A113424, A000897. Factors: A005809, A000984. Integrals: A007004, A024486. Sphere Curves: A318245, A318495.

Programs

  • GAP
    List([0..20],n->Factorial(3*n)/Factorial(n)^3); # Muniru A Asiru, Mar 31 2018
    
  • Magma
    [Factorial(3*n)/(Factorial(n))^3: n in [0..20] ]; // Vincenzo Librandi, Aug 20 2011
    
  • Maple
    seq((3*n)!/(n!)^3, n=0..16); # Zerinvary Lajos, Jun 28 2007
  • Mathematica
    Sum [ (-1)^(k+n) Binomial[ 2n, k ]^3, {k, 0, 2n} ]
    a[ n_] := If[ n < 0, 0, (-1)^n HypergeometricPFQ[ {-2 n, -2 n, -2 n}, {1, 1}, 1]]; (* Michael Somos, Oct 22 2014 *)
    Table[Multinomial[n, n, n], {n, 0, 100}] (* Emanuele Munarini, Oct 25 2016 *)
    CoefficientList[Series[Hypergeometric2F1[1/3,2/3,1,27*x],{x,0,5}],x] (* Bradley Klee, Feb 28 2018 *)
    Table[(3n)!/(n!)^3,{n,0,20}] (* Harvey P. Dale, Mar 09 2025 *)
  • Maxima
    makelist(multinomial_coeff(n,n,n),n,0,24); /* Emanuele Munarini, Oct 25 2016 */
    
  • PARI
    {a(n) = if( n<0, 0, (3*n)! / n!^3)}; /* Michael Somos, Dec 03 2002 */
    
  • PARI
    {a(n) = my(A, m); if( n<1, n==0, m=1; A = 1 + O(x); while( m<=n, m*=3; A = subst( (1 + 2*x) * subst(A, x, (x/3)^3), x, serreverse(x * (1 + x + x^2) / (1 + 2*x)^3 / 3 + O(x^m)))); polcoeff(A, n))}; /* Michael Somos, Dec 03 2002 */
    
  • Python
    from math import factorial
    def A006480(n): return factorial(3*n)//factorial(n)**3 # Chai Wah Wu, Oct 04 2022

Formula

Using Stirling's formula in A000142 it is easy to get the asymptotic expression a(n) ~ 1/2 * sqrt(3) * 27^n / (Pi*n) - Dan Fux (dan.fux(AT)OpenGaia.com or danfux(AT)OpenGaia.com), Apr 07 2001
From Karol A. Penson, Nov 21 2001: (Start)
O.g.f.: hypergeom([1/3, 2/3], [1], 27*x).
E.g.f.: hypergeom([1/3, 2/3], [1, 1], 27*x).
Integral representation as n-th moment of a positive function on [0, 27]:
a(n) = int( x^n*(-1/24*(3*sqrt(3)*hypergeom([2/3, 2/3], [4/3], 1/27*x)* Gamma(2/3)^6*x^(1/3) - 8*hypergeom([1/3, 1/3], [2/3], 1/27*x)*Pi^3)/Pi^3 /x^(2/3)/Gamma(2/3)^3), x=0..27). This representation is unique. (End)
a(n) = Sum_{k=-n..n} (-1)^k*binomial(2*n, n+k)^3. - Benoit Cloitre, Mar 02 2005
a(n) = C(2n,n)*C(3n,n) = A104684(2n,n). - Paul Barry, Mar 14 2006
G.f. satisfies: A(x^3) = A( x*(1+3*x+9*x^2)/(1+6*x)^3 )/(1+6*x). - Paul D. Hanna, Oct 29 2010
D-finite with recurrence: n^2*a(n) - 3*(3*n-1)*(3*n-2)*a(n-1) = 0. - R. J. Mathar, Dec 04 2012
a(n) = (n+1)^2*(n+2)*A161581(n) for n>2. - Alexander Adamchuk, Dec 27 2013
0 = a(n)^2*(472392*a(n+1)^2 - 83106*a(n+1)*a(n+2) + 3600*a(n+2)^2) + a(n)*a(n+1)*(-8748*a(n+1)^2 + 1953*a(n+1)*a(n+2) - 120*a(n+2)^2) + a(n+1)^2*(36*a(n+1)^2 - 12*a(n+1)*a(n+2) + a(n+2)^2) for all n in Z. - Michael Somos, Oct 22 2014
0 = x*(27*x-1)*y'' + (54*x-1)*y' + 6*y, where y is g.f. - Gheorghe Coserea, Jul 06 2016
From Peter Bala, Jul 15 2016: (Start)
a(n) = 3*binomial(2*n - 1,n)*binomial(3*n - 1,n) = 3*[x^n] 1/(1 - x)^n * [x^n] 1/(1 - x)^(2*n) for n >= 1.
a(n) = binomial(2*n,n)*binomial(3*n,n) = ([x^n](1 + x)^(2*n)) *([x^n](1 + x)^(3*n)) = [x^n](F(x)^(6*n)), where F(x) = 1 + x + 2*x^2 + 14*x^3 + 127*x^4 + 1364*x^5 + 16219*x^6 + ... appears to have integer coefficients. Cf. A002894.
This sequence occurs as the right-hand side of several binomial sums:
Sum_{k = 0..2*n} (-1)^(n+k)*binomial(2*n,k)^3 = a(n) (Dixon's identity).
Sum_{k = 0..n} binomial(n,k)*binomial(2*n,n - k)*binomial(3*n + k,k) = a(n) (Gould, Vol. 4, 6.86)
Sum_{k = 0..n} (-1)^(n+k)*binomial(n,k)*binomial(2*n + k,n)*binomial(3*n + k,n) = a(n).
Sum_{k = 0..n} binomial(n,k)*binomial(2*n + k,k)*binomial(3*n,n - k) = a(n).
Sum_{k = 0..n} (-1)^(k)*binomial(n,k)*binomial(3*n - k,n)*binomial(4*n - k,n) = a(n).
Sum_{k = 0..2*n} (-1)^(n+k)*binomial(2*n + k,2*n - k)*binomial(2*k,k)*binomial(4*n - k,2*n) = a(n) (see Gould, Vol.5, 9.23).
Sum_{k = 0..2*n} (-1)^k*binomial(3*n,k)*binomial(3*n - k,n)^3 = a(n) (Sprugnoli, Section 2.9, Table 10, p. 123). (End)
From Bradley Klee, Feb 28 2018: (Start)
a(n) = A005809(n)*A000984(n).
G.f.: F(x) = 1/(2*Pi) Integral_{z=0..2*Pi} 2F1(1/3,2/3; 1/2; 27*x*sin^2(z)) dz.
With G(x) = x*2F1(1/3,2/3; 2; 27*x): F(x) = d/dx G(x). (Cf. A007004) (End)
F(x)*G(1/27-x) + F(1/27-x)*G(x) = 1/(4*Pi*sqrt(3)). - Bradley Klee, Sep 29 2018
Sum_{n>=0} 1/a(n) = A091683. - Amiram Eldar, Nov 15 2020
From Peter Bala, Sep 20 2021: (Start)
a(n) = Sum_{k = n..2*n} binomial(2*n,k)^2 * binomial(k,n). Cf. A001459.
a(n*p^k) == a(n*p^(k-1)) ( mod p^(3*k) ) for any prime p >= 5 and any positive integers n and k (write a(n) as C(3*n,2*n)*C(2*n,n) and apply Mestrovic, equation 39, p. 12). (End)
a(n) = 6*A060542(n). - R. J. Mathar, Jun 21 2023
Occurs on the right-hand side of the binomial sum identities Sum_{k = -n..n} (-1)^k * (n + x - k) * binomial(2*n, n+k)^3 = (x + n)*a(n) and Sum_{k = -n..n} (-1)^k * (n + x - k)^3 * binomial(2*n, n+k)^3 = x*(x + n)*(x + 2*n)*a(n) (x arbitrary). Compare with Dixon's identity: Sum_{k = -n..n} (-1)^k * binomial(2*n, n+k)^3 = a(n). - Peter Bala, Jul 31 2023
From Peter Bala, Aug 14 2023: (Start)
a(n) = (-1)^n * [x^(2*n)] ( (1 - x)^(4*n) * Legendre_P(2*n, (1 + x)/(1 - x)) ).
Row 1 of A364509. (End)
From Peter Bala, Oct 10 2024: (Start)
The following hold for n >= 1:
a(n) = Sum_{k = 0.. 2*n} (-1)^(n+k) * k/n * binomial(2*n, k)^3 = 3/2 * Sum_{k = 0.. 2*n} (-1)^(n+k) * (k/n)^2 * binomial(2*n, k)^3.
a(n) = 3/2 * Sum_{0..2*n-1} (-1)^(n+k) * k/n * binomial(2*n, k)^2*binomial(2*n-1, k).
a(n) = 3 * Sum_{0..2*n-1} (-1)^(n+k) * k/n * binomial(2*n, k)*binomial(2*n-1, k)^2. (End)
a(n) = Sum_{k = 0..n} (-1)^(n+k) * binomial(n, k) * A108625(2*n, k) (verified using the MulZeil procedure in Doron Zeilberger's MultiZeilberger package). - Peter Bala, Oct 15 2024

Extensions

a(14)-a(16) from Eric W. Weisstein
Terms a(17) and beyond from T. D. Noe, Jun 29 2008

A186375 a(n) equals the sum of the squares of the expansion coefficients for (x + y + 2*z)^n.

Original entry on oeis.org

1, 6, 54, 588, 7110, 91476, 1224636, 16849944, 236523078, 3371140740, 48630906324, 708412918824, 10403176168476, 153813188724552, 2287366047735480, 34185974267420208, 513159651195396678, 7732530110414488932
Offset: 0

Views

Author

Paul D. Hanna, Feb 19 2011

Keywords

Comments

Equivalently, a(n) equals the sum of the squares of the coefficients in any one of the following polynomials: (1 + 2*x^k + x^p)^n, (2 + x^k + x^p)^n, or (1 + x^k + 2*x^p)^n, for all p > n*k and fixed k > 0.
Rescaling the g.f. G(x) to T(u)=G(3*u/16) moves the singular point x=1/16 to u=1/3. Period function T(u) measures precession of the J-vector along an algebraic sphere curve with local cyclic C_3 symmetry. For precise definitions, pictures, a proof certificate, and more information, see A318245. - Bradley Klee, Aug 22 2018

Examples

			G.f.: A(x) = 1 + 6*x + 54*x^2/2!^2 + 588*x^3/3!^2 + 7110*x^4/4!^2 + ...
The g.f. may be expressed as:
A(x) = [Sum_{n>=0} x^n/n!^2]^2 *[Sum_{n>=0} (4x)^n/n!^2] where
[Sum_{n>=0} x^n/n!^2]^2 = 1 + 2*x + 6*x^2/2!^2 + 20*x^3/3!^2 + 70*x^4/4!^2 + ... + (2n)!/n!^2 *x^n/n!^2 + ...
a(4) =   256
       + 1024 + 1024
       + 576  + 2304 + 576
       + 64   + 576  + 576 + 64
       + 1    + 16   + 36  + 16 + 1  = 7110.
		

Crossrefs

Programs

  • Maple
    A186375 := n -> 4^n*hypergeom([1/2,-n,-n], [1,1], 1):
    seq(simplify(A186375(n)), n=0..17); # Peter Luschny, May 24 2017
  • Mathematica
    Table[Sum[Binomial[n,k]^2*Binomial[2k,k]*4^(n-k),{k,0,n}],{n,0,20}] (* Vaclav Kotesovec, Oct 20 2012 *)
    (* From Bradley Klee, Aug 22 2018: Start *)PyramidLevel[n_]:=If[n==0, {{1}}, Table[Coefficient[(2*x+y+z)^n,x^j*y^k*z^(n-j-k)]^2, {j,0,n}, {k,0,n-j}]]; a1[n_]:= Total[Flatten[PyramidLevel[n]]];
    a1 /@ Range[0, 10]
    RecurrenceTable[{4*(4*n-5)*(4*n-3)*a[n-2]-2*(10*n^2-10*n+3)*a[n-1]+n^2*a[n]==0, a[0]==1, a[1]==6},a,{n,0,1000}] (*  End *)
    a[ n_] := If[ n < 0, 0, Block[ {x, y, z}, Expand[ (x + y + 2 z)^n] /. {t_Integer -> t^2, x -> 1, y -> 1, z -> 1}]]; (* Michael Somos, Aug 27 2018 *)
  • PARI
    {a(n)=sum(k=0,n,binomial(n,k)^2*binomial(2*(n-k),n-k)*4^k)}
    
  • PARI
    {a(n)=n!^2*polcoeff(sum(m=0,n,x^m/m!^2)^2*sum(m=0,n,(2^2*x)^m/m!^2),n)}
    
  • PARI
    {a(n)=local(V=Vec((1+2*x+x^(n+2))^n));V*V~}

Formula

(1) a(n) = Sum_{k=0..n} C(n,k)^2*C(2k,k)*4^(n-k).
Let g.f. A(x) = Sum_{n>=0} a(n)*x^n/n!^2, then
(2) A(x) = B(x)^2 * B(2^2*x)
where B(x) = Sum_{n>=0} x^n/n!^2 = BesselI(0, 2*sqrt(x)).
Recurrence: n^2*a(n) = 2*(10*n^2-10*n+3)*a(n-1) - 4*(4*n-5)*(4*n-3)*a(n-2). - Vaclav Kotesovec, Oct 20 2012
a(n) ~ 2^(4*n+1/2)/(Pi*n). - Vaclav Kotesovec, Oct 20 2012
a(n) = 4^n*hypergeom([1/2,-n,-n], [1,1], 1). - Peter Luschny, May 24 2017
G.f.: G(x)=Sum_{n>=0}a(n)x^n, 6*(10*x-1)*G + (192*x^2-40*x+1)*G' + x*(16*x-1)*(4*x-1)*G''=0. - Bradley Klee, Aug 22 2018

Extensions

Name edited by Bradley Klee, Aug 22 2018

A318417 Scaled g.f. T(u) = Sum_{n>=0} a(n)*(3*u/48)^n satisfies 3*(2*u-1)*T + d/du(4*u*(2*u-1)*(u-1)*T') = 0, and a(0)=1; sequence gives a(n).

Original entry on oeis.org

1, 12, 228, 5040, 121380, 3093552, 82047504, 2240162496, 62508328740, 1773580002480, 50988042273168, 1481392081181376, 43413834762798864, 1281498837550545600, 38059165854011995200, 1136249610240102992640, 34076899109906247654180, 1026061759878805529676720
Offset: 0

Views

Author

Bradley Klee, Aug 26 2018

Keywords

Comments

The defining differential equation determines the period function T(u) along a square-symmetric Hamiltonian family of algebraic plane curves, u=2*H=x^2+y^2-(1/2)*(x^4+y^4). The separatrix with u=1/2 is a product of two congruent ellipses. Transformation u->1-u leaves T(u) invariant.

Examples

			Singular Points of u=x^2+y^2-(1/2)*(x^4+y^4).
   u             (x,y)              type
=============================================
   0             (0,0)            circular
  1/2      (0,+/-1) (+/-1,0)     hyperbolic
   1       +/-(1,1) +/-(1,-1)     circular
G.f. = 1 + 12*x + 228*x^2 + 5040*x^3 + 121380*x^4 + 3093552*x^5 + 82047504*x^6 + ... - _Michael Somos_, Aug 27 2018
		

Crossrefs

Factors: A000984, A098410. Quartic Periods: A113424, A002894, A318245.

Programs

  • Mathematica
    RecurrenceTable[{n^2*a[n]-12*(2*n-1)^2*a[n-1] + 128*(2*n-3)*(2*n-1)*a[n-2] == 0, a[0] == 1, a[1] == 12}, a, {n,0,1000}]
    PeriodIntegral[n_]:= CoefficientList[Series[1/Sqrt[1-2*x*((z+y)^4+(z-y)^4)], {x,0,n}], {x, y, z}][[#+1,2*#+1,2*#+1]]&/@Range[0,n];
    PeriodIntegral[10]
    HadamardProduct[n_]:=Times@@Map[CoefficientList[Normal[Series[#,{x,0,n}]],x,n+1]&, {1/Sqrt[1-12*x+32*x^2], 1/Sqrt[1-4*x]}];
    HadamardProduct[10]
    a[ n_] := Binomial[2 n, n] SeriesCoefficient[ (1 - 12 x + 32 x^2)^(-1/2), {x, 0, n}]; (* Michael Somos, Aug 27 2018 *)
  • PARI
    {a(n) = if( n<0, 0, binomial(2*n, n) * polcoeff( (1 - 12*x + 32*x^2 + x * O(x^n))^(-1/2), n))}; /* Michael Somos, Aug 27 2018 */

Formula

Define t(u,z) = 1/sqrt(1-2*u*(cos(z)^4+sin(z)^4)), then certify that:
3*(2*u-1)*t + d/du(4*u*(2*u-1)*(u-1)*dt/du) = d/dz((1/4)*sin(4*z)*t^3).
G.f.: G(x) = T(48*x/3), T(u) = 1/(2*Pi)*Integral_{z=0..2*Pi} t(u)*dz.
n^2*a(n) - 12*(2*n-1)^2*a(n-1) + 128*(2*n-3)*(2*n-1)*a(n-2) = 0.
a(n) = A000984(n)*A098410(n).
0 = +a(n)*(+a(n+1)*(+134217728*a(n+2) -25165824*a(n+3) +819200*a(n+4)) +a(n+2)*(-6291456*a(n+2) +1998848*a(n+3) -78336*a(n+4)) +a(n+3)*(-29184*a(n+3) +1472*a(n+4))) +a(n+1)*(+a(n+1)*(-6291456*a(n+2) +1179648*a(n+3) -38400*a(n+4)) +a(n+2)*(+327680*a(n+2) -110592*a(n+3) +4448*a(n+4)) +a(n+3)*(+1728*a(n+3) -90*a(n+4))) +a(n+2)*(+a(n+2)*(-1536*a(n+2) +800*a(n+3) -36*a(n+4)) +a(n+3)*(-18*a(n+3) +a(n+4))) for all n in Z. - Michael Somos, Aug 27 2018
G.f.: hypergeom([1/2, 1/2],[1],16*x/(32*x-1))/sqrt(1-32*x). - Mark van Hoeij, Dec 13 2024

A318495 Scaled g.f. T(u) = Sum_{n>=0} a(n)*(u/16)^n satisfies 5*(21*u-16)*T + d/du( 4*u*(u-1)*(27*u-32)*T') = 0, and a(0)=1; sequence gives a(n).

Original entry on oeis.org

1, 10, 120, 1540, 20500, 279480, 3876600, 54496200, 774468900, 11107261000, 160553895040, 2336799457200, 34219387524400, 503846306168800, 7455357525594000, 110811908027490960, 1653792126235140900, 24774309852363829800, 372404448149589213600
Offset: 0

Views

Author

Bradley Klee, Aug 27 2018

Keywords

Comments

The linked document "Proof Certificate" gives data for verifying that period function T(u) measures precession of the J-vector along an algebraic sphere curve with local cyclic C_5 symmetry (also cf. Examples and A318496).

Examples

			Period function T_{I}(w): Take T_{C5}(u) and T_{C3}(v) from A318495 and A318496 respectively. Set (u,v)=(1-w,w+5/27), with u in [0,1], v in [0,5/27], and w in [-5/27,1]. Define piecewise function T_{I}(w) = T_{C5}(1-w) if w in [0,1] or T_{I}(w) = T_{C3}(w+5/27) if w in [-5/27,0].
Geometric Singular Points: Construct a family of algebraic sphere curves by intersecting a sphere 1=X^2+Y^2+Z^2 with the icosahedral surface w=Z^6 - 5*(X^2+Y^2)*Z^4 + 5*(X^2+Y^2)^2*Z^2 - 2*(X^4-10*X^2*Y^2+5*Y^4)*X*Z. Six icosahedron vertex axes intersect the sphere in twelve circular points with w=1. Ten dodecahedron vertex axes intersect the sphere in twenty circular points with w=-5/27. Fifteen icosidodecahedron vertex axes intersect the sphere in thirty hyperbolic points with w=0.
		

Crossrefs

Cf. A318496. Periods: A186375, A318245, A318417.

Programs

  • GAP
    a:=[1,10];; for n in [3..20] do a[n]:=(1/(2*(n-1)^2))*(( (59*(n^2-3*n+2)+20)*a[n-1]-(12*(6*n-13)*(6*n-11))*a[n-2])); od; a; # Muniru A Asiru, Sep 24 2018
  • Mathematica
    RecurrenceTable[{2 n^2 a[n] - (59 n^2 - 59 n + 20) a[n - 1] + 12 (6 n - 7) (6 n - 5) a[n - 2] == 0, a[0] == 1, a[1] == 10}, a, {n, 0, 1000}]

Formula

2*n^2*a(n) - (59*n^2-59*n+20)*a(n-1) + 12*(6*n-7)*(6*n-5)*a(n-2) = 0.
For n > 0, a(n) mod 10 = 0 (conjecture, tested up to n=10^6).
From Bradley Klee, May 30 2023: (Start)
The defining ODE can be derived from the following Weierstrass data:
g2 = (243/256)*(256-640*x+520*x^2-135*x^3);
g3 = (729/8192)*(8192-30720*x+44160*x^2-29680*x^3+8775*x^4-729*x^5);
which determine an elliptic surface with four singular fibers. (End)
G.f.: hypergeom([1/12, 5/12],[1],1728*x^5*(27*x-2)^3*(16*x-1)^2/(2160*x^3-520*x^2+40*x-1)^3)/(1-40*x+520*x^2-2160*x^3)^(1/4). - Mark van Hoeij, Dec 13 2024

A318496 Scaled g.f. T(v) = Sum_{n>=0} a(n)*(v/16)^n satisfies 15*(189*v-80)*T + d/dv(4*v*(27*v-5)*(27*v-32)*T') = 0, and a(0)=1; sequence gives a(n).

Original entry on oeis.org

1, 30, 1440, 85260, 5606100, 391231080, 28360117800, 2110794125400, 160187289344100, 12339496371120600, 961855480344860640, 75700880007230883600, 6005580964527420946800, 479651805879329497831200, 38529018420812424368031600, 3110295017383730347887664560
Offset: 0

Views

Author

Bradley Klee, Aug 27 2018

Keywords

Comments

Period function T(v) measures precession of the J-vector along an algebraic sphere curve with local cyclic C_3 symmetry. For precise definitions, pictures, a proof certificate, and more information, see A318495.

Crossrefs

Cf. A318495. Periods: A186375, A318245, A318417.

Programs

  • GAP
    a:=[1,30];; for n in [3..20] do a[n]:=(1/(10*(n-1)^2))*(3*(333*(n^2-3*n+2)+100)*a[n-1]-(324*(6*n-13)*(6*n-11)*a[n-2])); od; a; # Muniru A Asiru, Sep 24 2018
  • Mathematica
    RecurrenceTable[{10 n^2 a[n] - 3 (333 n^2 - 333 n + 100) a[n-1] + 324 (6*n - 7) (6 n - 5) a[n-2] == 0, a[0] == 1, a[1] == 30}, a, {n, 0, 15}]

Formula

10*n^2*a(n) - 3*(333*n^2-333*n+100)*a(n-1) + 324*(6*n-7)*(6*n-5)*a(n-2) = 0.
For n > 0, a(n) mod 30 = 0 (conjecture, tested up to n=10^6).
G.f.: hypergeom([1/12, 5/12],[1],-1728*(432*x-5)^2*x^3*(27*x-2)^5/(1-120*x+3240*x^2+174960*x^3)^3)/(1-120*x+3240*x^2+174960*x^3)^(1/4). - Mark van Hoeij, Dec 13 2024
Showing 1-5 of 5 results.