A318614
Scaled g.f. S(u) = Sum_{n>0} a(n)*16*(u/16)^n satisfies T(u) = d/du S(u), with T(u) as defined by A318417; sequence gives a(n).
Original entry on oeis.org
1, 6, 76, 1260, 24276, 515592, 11721072, 280020312, 6945369860, 177358000248, 4635276570288, 123449340098448, 3339525750984528, 91535631253610400, 2537277723600799680, 71015600640006437040, 2004523477053308685540, 57003431104378084982040
Offset: 1
Singular Value: S(1/2) = 1/sqrt(2).
N=4, h=1/sqrt(2) Quantization: S(u) = (n+1/2)*h/N.
n | u
==================================================
0 | 0.08544689553344134756293807606337...
1 | 0.23840989875904155311088418238272...
2 | 0.36638282702449450473835851051425...
3 | 0.46595506694324457665483887176081...
- E. Heller, The Semiclassical Way to Dynamics and Spectroscopy, Princeton University Press, 2018, page 204.
-
a:=[1,6];; for n in [3..20] do a[n]:=(1/(n*(n-1)^2))*(12*(n-1)*(2*n-3)^2*a[n-1]-(128*(n-2)*(2*n-5)*(2*n-3)*a[n-2])); od; a; # Muniru A Asiru, Sep 24 2018
-
RecurrenceTable[{(n-1)^2*n*a[n] - 12*(n-1)*(2*n-3)^2*a[n-1] + 128*(n-2)*(2*n-5)*(2*n-3)*a[n-2] == 0, a[1] == 1, a[2] == 6}, a, {n, 1, 1000}]
A186375
a(n) equals the sum of the squares of the expansion coefficients for (x + y + 2*z)^n.
Original entry on oeis.org
1, 6, 54, 588, 7110, 91476, 1224636, 16849944, 236523078, 3371140740, 48630906324, 708412918824, 10403176168476, 153813188724552, 2287366047735480, 34185974267420208, 513159651195396678, 7732530110414488932
Offset: 0
G.f.: A(x) = 1 + 6*x + 54*x^2/2!^2 + 588*x^3/3!^2 + 7110*x^4/4!^2 + ...
The g.f. may be expressed as:
A(x) = [Sum_{n>=0} x^n/n!^2]^2 *[Sum_{n>=0} (4x)^n/n!^2] where
[Sum_{n>=0} x^n/n!^2]^2 = 1 + 2*x + 6*x^2/2!^2 + 20*x^3/3!^2 + 70*x^4/4!^2 + ... + (2n)!/n!^2 *x^n/n!^2 + ...
a(4) = 256
+ 1024 + 1024
+ 576 + 2304 + 576
+ 64 + 576 + 576 + 64
+ 1 + 16 + 36 + 16 + 1 = 7110.
-
A186375 := n -> 4^n*hypergeom([1/2,-n,-n], [1,1], 1):
seq(simplify(A186375(n)), n=0..17); # Peter Luschny, May 24 2017
-
Table[Sum[Binomial[n,k]^2*Binomial[2k,k]*4^(n-k),{k,0,n}],{n,0,20}] (* Vaclav Kotesovec, Oct 20 2012 *)
(* From Bradley Klee, Aug 22 2018: Start *)PyramidLevel[n_]:=If[n==0, {{1}}, Table[Coefficient[(2*x+y+z)^n,x^j*y^k*z^(n-j-k)]^2, {j,0,n}, {k,0,n-j}]]; a1[n_]:= Total[Flatten[PyramidLevel[n]]];
a1 /@ Range[0, 10]
RecurrenceTable[{4*(4*n-5)*(4*n-3)*a[n-2]-2*(10*n^2-10*n+3)*a[n-1]+n^2*a[n]==0, a[0]==1, a[1]==6},a,{n,0,1000}] (* End *)
a[ n_] := If[ n < 0, 0, Block[ {x, y, z}, Expand[ (x + y + 2 z)^n] /. {t_Integer -> t^2, x -> 1, y -> 1, z -> 1}]]; (* Michael Somos, Aug 27 2018 *)
-
{a(n)=sum(k=0,n,binomial(n,k)^2*binomial(2*(n-k),n-k)*4^k)}
-
{a(n)=n!^2*polcoeff(sum(m=0,n,x^m/m!^2)^2*sum(m=0,n,(2^2*x)^m/m!^2),n)}
-
{a(n)=local(V=Vec((1+2*x+x^(n+2))^n));V*V~}
A318245
Scaled g.f. T(v) = Sum_{n>=0} a(n)*(3*v/64)^n satisfies 9*(5*v-4)*T + d/dv(16*v*(v-1)*(3*v-4)*T') = 0, and a(0)=1; sequence gives a(n).
Original entry on oeis.org
1, 12, 180, 2928, 49860, 875952, 15754704, 288722880, 5373771876, 101334517680, 1932405892560, 37208369165760, 722497419680400, 14132680228175040, 278236490874120000, 5508974545258860288, 109624581377872629156, 2191185332414847848880, 43971545517545956240464
Offset: 0
Period function T_{O}(w): Take T_{C3}(u) and T_{C4}(v) from A186375 and A318245 respectively. Set (u,v)=(w-2/3,2-w), with u in [0,1/3], v in [0,1], and w in [2/3,2]. Define piecewise function T_{O}(w) = T_{C3}(w-2/3) if w in [2/3,1] or T_{O}(w) = T_{C4}(2-w) if w in [1,2].
Geometric Singular Points: Construct a family of algebraic sphere curves by intersecting a sphere 1=X^2+Y^2+Z^2 with the octahedral surface w=2*(X^4+Y^4+Z^4). Four cube vertex axes--(x+y+z, -x+y+z, x-y+z, x+y-z)--intersect the sphere in eight circular points with w=2/3. Three octahedron vertex axes--(x, y, z)--intersect the sphere in six circular points with w=2. Six cuboctahedron vertex axes--(x+y, x-y, y+z, y-z, z+x, z-x)--intersect the sphere in twelve hyperbolic points with w=1.
- W. G. Harter and C. W. Patterson, Rotational energy surfaces and high-J eigenvalue structure of polyatomic molecules, The Journal of Chemical Physics, 80 (1984), 4252.
- S. Herfurtner, Elliptic surfaces with four singular fibres, Mathematische Annalen, 1991. Preprint.
- Bradley Klee, Proof Certificate.
- Bradley Klee, Checking Weierstrass data, 2023.
- Eric Weisstein's World of Mathematics, Goursat's Surface.
-
CoefficientList[Expand[Normal@Series[Divide[Sqrt[S],Sqrt[1-4*S*x]*Sqrt[S-8 + 8*Sqrt[1-4*S*x]]], {x, 0, 13}]/.{S->12+4*Q^2}]/.{Q^n_:>(1/2)^n*Binomial[n, n/2]} /.{x->1/3*x}, x]
RecurrenceTable[{3*n^2*a[n] - 4*(28*n^2-28*n+9)*a[n-1] + 64*(4*n-5)*(4*n-3)*a[n-2] == 0, a[0]==1, a[1]==12}, a, {n,0,1000}]
A318495
Scaled g.f. T(u) = Sum_{n>=0} a(n)*(u/16)^n satisfies 5*(21*u-16)*T + d/du( 4*u*(u-1)*(27*u-32)*T') = 0, and a(0)=1; sequence gives a(n).
Original entry on oeis.org
1, 10, 120, 1540, 20500, 279480, 3876600, 54496200, 774468900, 11107261000, 160553895040, 2336799457200, 34219387524400, 503846306168800, 7455357525594000, 110811908027490960, 1653792126235140900, 24774309852363829800, 372404448149589213600
Offset: 0
Period function T_{I}(w): Take T_{C5}(u) and T_{C3}(v) from A318495 and A318496 respectively. Set (u,v)=(1-w,w+5/27), with u in [0,1], v in [0,5/27], and w in [-5/27,1]. Define piecewise function T_{I}(w) = T_{C5}(1-w) if w in [0,1] or T_{I}(w) = T_{C3}(w+5/27) if w in [-5/27,0].
Geometric Singular Points: Construct a family of algebraic sphere curves by intersecting a sphere 1=X^2+Y^2+Z^2 with the icosahedral surface w=Z^6 - 5*(X^2+Y^2)*Z^4 + 5*(X^2+Y^2)^2*Z^2 - 2*(X^4-10*X^2*Y^2+5*Y^4)*X*Z. Six icosahedron vertex axes intersect the sphere in twelve circular points with w=1. Ten dodecahedron vertex axes intersect the sphere in twenty circular points with w=-5/27. Fifteen icosidodecahedron vertex axes intersect the sphere in thirty hyperbolic points with w=0.
- É. Goursat, Étude des surfaces qui admettent tous les plans de symétrie d'un polyèdre régulier, Annales scientifiques de l'École Normale Supérieure, Série 3 : Volume 4 (1887), 166-170.
- W. G. Harter and D. E. Weeks, Rotation-vibration spectra of icosahedral molecules. I. Icosahedral symmetry analysis and fine structure, Journal of Chemical Physics, 90 (1989), 4370.
- S. Herfurtner, Elliptic surfaces with four singular fibres, Mathematische Annalen, 1991. Preprint.
- Bradley Klee, Proof Certificate.
- Bradley Klee, Checking Weierstrass data, 2023.
- O. Laporte, Polyhedral Harmonics, Zeitschrift für Naturforschung A, 8-11 (1948), 450.
-
a:=[1,10];; for n in [3..20] do a[n]:=(1/(2*(n-1)^2))*(( (59*(n^2-3*n+2)+20)*a[n-1]-(12*(6*n-13)*(6*n-11))*a[n-2])); od; a; # Muniru A Asiru, Sep 24 2018
-
RecurrenceTable[{2 n^2 a[n] - (59 n^2 - 59 n + 20) a[n - 1] + 12 (6 n - 7) (6 n - 5) a[n - 2] == 0, a[0] == 1, a[1] == 10}, a, {n, 0, 1000}]
A318496
Scaled g.f. T(v) = Sum_{n>=0} a(n)*(v/16)^n satisfies 15*(189*v-80)*T + d/dv(4*v*(27*v-5)*(27*v-32)*T') = 0, and a(0)=1; sequence gives a(n).
Original entry on oeis.org
1, 30, 1440, 85260, 5606100, 391231080, 28360117800, 2110794125400, 160187289344100, 12339496371120600, 961855480344860640, 75700880007230883600, 6005580964527420946800, 479651805879329497831200, 38529018420812424368031600, 3110295017383730347887664560
Offset: 0
-
a:=[1,30];; for n in [3..20] do a[n]:=(1/(10*(n-1)^2))*(3*(333*(n^2-3*n+2)+100)*a[n-1]-(324*(6*n-13)*(6*n-11)*a[n-2])); od; a; # Muniru A Asiru, Sep 24 2018
-
RecurrenceTable[{10 n^2 a[n] - 3 (333 n^2 - 333 n + 100) a[n-1] + 324 (6*n - 7) (6 n - 5) a[n-2] == 0, a[0] == 1, a[1] == 30}, a, {n, 0, 15}]
Showing 1-5 of 5 results.
Comments