A186491 Counts a family of permutations occurring in the study of squeezed states of the simple harmonic oscillator.
1, 2, 28, 1112, 87568, 11447072, 2239273408, 612359887232, 223061763490048, 104399900177326592, 61049165415292607488, 43617245341775265585152, 37385513306142843500105728, 37862584188750782065354022912
Offset: 0
Examples
a(1)=2: The two permutations in Symm(4) satisfying the conditions are ... (13)(24) of type AADD ... (14)(23) of type AADD. a(2)=28: Clearly, the ascent-descent structure of one of our permutations must start with an AA and finish with a DD so the two possible types are AAAADDDD and AADDAADD. There are 4!=24 permutations of type AAAADDDD coming from the bijections of {1,2,3,4} onto {5,6,7,8}. There are 2*2 = 4 permutations of the remaining type AADDAADD, namely ... (13)(24)(57)(68) ... (13)(24)(58)(67) ... (14)(23)(57)(68) ... (14)(23)(58)(67).
Links
- Jitender Singh, On an arithmetic convolution, arXiv:1402.0065 [math.NT], 2014 and J. Int. Seq. 17 (2014) # 14.6.7.
- C. V. Sukumar and A. Hodges, Quantum algebras and parity-dependent spectra, Proc. R. Soc. A (2007) 463.
Programs
-
Maple
G:= sqrt(sec(2*x)): Gser := series(G, x = 0,32): seq((2*n)!*coeff(Gser,x^(2*n)), n = 1..15); # Alternative, using the Singh transformation 'g' from Maple in A126156: a := n -> (-4)^n*g(euler, 2*n); seq(a(n), n = 0..13); # Peter Luschny, Sep 29 2023
-
Maxima
a[n]:=if n=0 then 1 else sum(a[n-k]*binomial(2*n,2*k)*(k/(2*n)-1)*(-4)^k,k,1,n); makelist(a[n],n,0,20); /* Tani Akinari, Sep 19 2023 */
Formula
GENERATING FUNCTION
(1)... sqrt(sec(2*x)) = Sum_{n>=0} a(n)*x^(2*n)/(2*n)!
= 1 + 2*x^2/2! + 28*x^4/4! + 1112*x^6/6! + ....
Compare with the e.g.f. Of A000364.
O.g.f. as a continued fraction: 1/(1-2*x/(1-12*x/(1-30*x/(...-2*n*(2*n-1)*x/(1-...))))) = 1 + 2*x + 28*x^2 + 1112*x^3 + ....
From Sergei N. Gladkovskii, Oct 23 2012: (Start)
G.f.: 1/U(0) where U(k) = 1 - (4*k+1)*(4*k+2)*x/( 1 - (4*k+3)*(4*k+4)*x/U(k+1)); (continued fraction, 2-step).
G.f.: 1/S(0) where S(k) = 1 - 2*x*(16*k^2 + 4*k + 1) - 8*x^2*(k+1)*(2*k+1)*(4*k+1)*(4*k+3)/S(k+1); (continued fraction, 1-step).
(End)
Let A(x) = Sum_{n>=0} a(n)*x^n = 1/T(0) where T(k)= 1 - (2*k+1)*(2*k+2)*x^2/T(k+1) -(continued fraction, 1-step),- then sqrt(sec(2*x)) = Sum_{n>=0} a(n)*x^n/n!. - Sergei N. Gladkovskii, Oct 25 2012
G.f.: 1/S(0) where S(k)= 1 - (2*k+1)*(2*k+2)*x /S(k+1); (continued fraction, 1-step). - Sergei N. Gladkovskii, Oct 26 2012
G.f.: Q(0), where Q(k) = 1 - x*(2*k+1)*(2*k+2)/(x*(2*k+1)*(2*k+2) - 1/Q(k+1)); (continued fraction). - Sergei N. Gladkovskii, Oct 09 2013
For n > 0, a(n) = Sum_{k=1..n} a(n-k)*binomial(2*n,2*k)*(k/(2*n)-1)*(-4)^k. - Tani Akinari, Sep 19 2023.
Comments