cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A186640 Primes p such that the decimal expansion of 1/p has a periodic part of even length, but are not cyclic numbers (A001913).

Original entry on oeis.org

11, 13, 73, 89, 101, 103, 127, 137, 139, 157, 197, 211, 241, 251, 281, 293, 331, 349, 353, 373, 401, 409, 421, 449, 457, 463, 521, 557, 569, 601, 607, 617, 641, 653, 661, 673, 677, 691, 739, 761, 769, 809, 829, 859, 877, 881, 929, 967, 997, 1009, 1049, 1061
Offset: 1

Views

Author

Jani Melik, Feb 24 2011

Keywords

Crossrefs

Cf. A028416.

Programs

  • Maple
    f1_d := proc(n) local st, period:
    st := ithprime(n):
    period := numtheory[order](10,st):
    if (modp(period,2) = 0) then
       if (st-1 <> period) then
          RETURN(st):
       fi:
    fi: end:  seq(f1_d(n), n=1..200);
  • Mathematica
    Select[Prime[Range[200]], EvenQ[Length[RealDigits[1/#][[1, 1]]]] && MultiplicativeOrder[10, #] != # - 1 &] (* T. D. Noe, Oct 01 2012 *)
  • PARI
    is(p)=if(p>9 && isprime(p), my(o=znorder(Mod(10, p))); o%2==0 && o+1!=p, 0) \\ Charles R Greathouse IV, Oct 01 2012

Formula

p in A028416, but not A001913.