A186640 Primes p such that the decimal expansion of 1/p has a periodic part of even length, but are not cyclic numbers (A001913).
11, 13, 73, 89, 101, 103, 127, 137, 139, 157, 197, 211, 241, 251, 281, 293, 331, 349, 353, 373, 401, 409, 421, 449, 457, 463, 521, 557, 569, 601, 607, 617, 641, 653, 661, 673, 677, 691, 739, 761, 769, 809, 829, 859, 877, 881, 929, 967, 997, 1009, 1049, 1061
Offset: 1
Links
- T. D. Noe, Table of n, a(n) for n = 1..1000
Crossrefs
Cf. A028416.
Programs
-
Maple
f1_d := proc(n) local st, period: st := ithprime(n): period := numtheory[order](10,st): if (modp(period,2) = 0) then if (st-1 <> period) then RETURN(st): fi: fi: end: seq(f1_d(n), n=1..200);
-
Mathematica
Select[Prime[Range[200]], EvenQ[Length[RealDigits[1/#][[1, 1]]]] && MultiplicativeOrder[10, #] != # - 1 &] (* T. D. Noe, Oct 01 2012 *)
-
PARI
is(p)=if(p>9 && isprime(p), my(o=znorder(Mod(10, p))); o%2==0 && o+1!=p, 0) \\ Charles R Greathouse IV, Oct 01 2012