A186679 First differences of A116697.
0, -3, 4, -4, 7, -14, 22, -33, 54, -90, 145, -232, 376, -611, 988, -1596, 2583, -4182, 6766, -10945, 17710, -28658, 46369, -75024, 121392, -196419, 317812, -514228, 832039, -1346270, 2178310, -3524577, 5702886, -9227466, 14930353, -24157816, 39088168, -63245987, 102334156, -165580140
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (-1,0,-1,1).
Programs
-
Magma
A186679:= func< n | (-1)^n*Fibonacci(n+2) - (-1)^Floor(n/2) >; [A186679(n): n in [0..40]]; // G. C. Greubel, Aug 24 2025
-
Mathematica
Table[(-1)^n*Fibonacci[n+2] -(-1)^Floor[n/2], {n,0,40}] (* G. C. Greubel, Aug 24 2025 *)
-
SageMath
def A186679(n): return (-1)**n*fibonacci(n+2) -(-1)**(n//2) print([A186679(n) for n in range(41)]) # G. C. Greubel, Aug 24 2025
Formula
a(2*n) = A128533(n).
a(2*n+1) = A081714(n+1).
a(n+2) = A075193(n+2) - a(n).
G.f.: x*(-3+x)/((1+x-x^2)*(1+x^2)). - Colin Barker, Sep 08 2012
From G. C. Greubel, Aug 24 2025: (Start)
a(n) = (-1)^n*Fibonacci(n+2) - (-1)^floor(n/2).
E.g.f.: exp(-x/2)*(cosh(p*x) - (3/sqrt(5))*sinh(p*x)) - cos(x) - sin(x), where 2*p = sqrt(5). (End)