cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A186679 First differences of A116697.

Original entry on oeis.org

0, -3, 4, -4, 7, -14, 22, -33, 54, -90, 145, -232, 376, -611, 988, -1596, 2583, -4182, 6766, -10945, 17710, -28658, 46369, -75024, 121392, -196419, 317812, -514228, 832039, -1346270, 2178310, -3524577, 5702886, -9227466, 14930353, -24157816, 39088168, -63245987, 102334156, -165580140
Offset: 0

Views

Author

Reinhard Zumkeller, Feb 25 2011

Keywords

Crossrefs

Programs

  • Magma
    A186679:= func< n | (-1)^n*Fibonacci(n+2) - (-1)^Floor(n/2) >;
    [A186679(n): n in [0..40]]; // G. C. Greubel, Aug 24 2025
    
  • Mathematica
    Table[(-1)^n*Fibonacci[n+2] -(-1)^Floor[n/2], {n,0,40}] (* G. C. Greubel, Aug 24 2025 *)
  • SageMath
    def A186679(n): return (-1)**n*fibonacci(n+2) -(-1)**(n//2)
    print([A186679(n) for n in range(41)]) # G. C. Greubel, Aug 24 2025

Formula

a(n) = A116697(n+1) - A116697(n).
a(2*n) = A128533(n).
a(2*n+1) = A081714(n+1).
a(n+2) = A075193(n+2) - a(n).
G.f.: x*(-3+x)/((1+x-x^2)*(1+x^2)). - Colin Barker, Sep 08 2012
From G. C. Greubel, Aug 24 2025: (Start)
a(n) = (-1)^n*Fibonacci(n+2) - (-1)^floor(n/2).
E.g.f.: exp(-x/2)*(cosh(p*x) - (3/sqrt(5))*sinh(p*x)) - cos(x) - sin(x), where 2*p = sqrt(5). (End)