cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A081714 a(n) = F(n)*L(n+1) where F=Fibonacci and L=Lucas numbers.

Original entry on oeis.org

0, 3, 4, 14, 33, 90, 232, 611, 1596, 4182, 10945, 28658, 75024, 196419, 514228, 1346270, 3524577, 9227466, 24157816, 63245987, 165580140, 433494438, 1134903169, 2971215074, 7778742048, 20365011075, 53316291172, 139583862446, 365435296161, 956722026042
Offset: 0

Views

Author

Ralf Stephan, Apr 03 2003

Keywords

Comments

Also convolution of Fibonacci and Lucas numbers.
For n>2, a(n) represents twice the area of the triangle created by the three points (L(n-3), L(n-2)), (L(n-1), L(n)) and (F(n+3), F(n+2)) where L(k)=A000032(k) and F(k)=A000045(k). - J. M. Bergot, May 20 2014
For n>1, a(n) is the remainder when F(n+3)*F(n+4) is divided by F(n+1)*F(n+2). - J. M. Bergot, May 24 2014

Crossrefs

Programs

  • GAP
    List([0..30], n -> Fibonacci(n)*(Fibonacci(n+2)+Fibonacci(n))); # G. C. Greubel, Jan 07 2019
  • Magma
    [Fibonacci(n)*Lucas(n+1): n in [0..30]]; // Vincenzo Librandi, Sep 08 2012
    
  • Maple
    with(combinat): F:=n-> fibonacci(n): L:= n-> F(n+1)+F(n-1):
    a:= n-> F(n)*L(n+1): seq(a(n), n=0..30);
  • Mathematica
    Fibonacci[Range[0,50]]*LucasL[Range[0,50]+1] (* Vladimir Joseph Stephan Orlovsky, Mar 17 2011*)
  • PARI
    my(x='x+O('x^51));for(n=0,50,print1(polcoeff(serconvol(Ser((1+2*x)/(1-x-x*x)),Ser(x/(1-x-x*x))),n)", "))
    
  • PARI
    a(n)=fibonacci(n)*(fibonacci(n+2)+fibonacci(n))
    
  • PARI
    a(n) = round((-(-1)^n+(2^(-1-n)*((3-sqrt(5))^n*(-1+sqrt(5))+(1+sqrt(5))*(3+sqrt(5))^n))/sqrt(5))) \\ Colin Barker, Sep 28 2016
    
  • Sage
    [fibonacci(n)*(fibonacci(n+2)+fibonacci(n)) for n in (0..30)] # G. C. Greubel, Jan 07 2019
    

Formula

G.f.: x*(3-2*x)/((1+x)*(1-3*x+x^2)).
a(n) = A122367(n) - (-1)^n. - R. J. Mathar, Jul 23 2010
a(n) = (L(n+1)^2 - F(2*n+2))/2 = ( A001254(n+1) - A001906(n+1) )/2. - Gary Detlefs, Nov 28 2010
a(n+1) = - A186679(2*n+1). - Reinhard Zumkeller, Feb 25 2011
a(n) = A035513(1,n-1)*A035513(2,n-1). - R. J. Mathar, Sep 04 2016
a(n)+a(n+1) = A005248(n+1). - R. J. Mathar, Sep 04 2016
a(n) = (-(-1)^n+(2^(-1-n)*((3-sqrt(5))^n*(-1+sqrt(5))+(1+sqrt(5))*(3+sqrt(5))^n)) / sqrt(5)). - Colin Barker, Sep 28 2016

Extensions

Simpler definition from Michael Somos, Mar 16 2004

A075193 Expansion of (1-2*x)/(1+x-x^2).

Original entry on oeis.org

1, -3, 4, -7, 11, -18, 29, -47, 76, -123, 199, -322, 521, -843, 1364, -2207, 3571, -5778, 9349, -15127, 24476, -39603, 64079, -103682, 167761, -271443, 439204, -710647, 1149851, -1860498, 3010349, -4870847, 7881196, -12752043, 20633239, -33385282, 54018521, -87403803, 141422324
Offset: 0

Views

Author

Mario Catalani (mario.catalani(AT)unito.it), Sep 07 2002

Keywords

Comments

"Inverted" Lucas numbers:
The g.f. is obtained inserting 1/x into the g.f. of Lucas sequence and dividing by x. The closed form is a(n)=(-1)^n*a^(n+1)+(-1)^n*b^(n+1), where a=golden ratio and b=1-a, so that a(n)=(-1)^n*L(n+1), L(n)=Lucas numbers.

Crossrefs

Programs

  • Haskell
    a075193 n = a075193_list !! n
    a075193_list = 1 : -3 : zipWith (-) a075193_list (tail a075193_list)
    -- Reinhard Zumkeller, Sep 15 2015
    
  • Magma
    R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1-2*x)/(1+x-x^2))); // Marius A. Burtea, Jan 12 2020
  • Maple
    a:= n-> (Matrix([[1, -2]]). Matrix([[-1, 1], [1, 0]])^(n))[1, 1]:
    seq(a(n), n=0..45); # Alois P. Heinz, Jul 31 2008
  • Mathematica
    CoefficientList[Series[(1 - 2z)/(1 + z - z^2), {z, 0, 40}], z]

Formula

a(n) = -a(n-1)+a(n-2), a(0)=1, a(1)=-3.
a(n) = term (1,1) in the 1x2 matrix [1,-2] * [-1,1; 1,0]^n. - Alois P. Heinz, Jul 31 2008
a(n) = A186679(n)+A186679(n-2) for n>1. - Reinhard Zumkeller, Feb 25 2011
a(n) = A039834(n+1)-2*A039834(n). - R. J. Mathar, Sep 27 2014
a(n) = (-1)^(n-1)*A001906(n)/A000045(n). - Taras Goy, Jan 12 2020
E.g.f.: exp(-(1+sqrt(5))*x/2)*(3 + sqrt(5) - 2*exp(sqrt(5)*x))/(1 + sqrt(5)). - Stefano Spezia, Jan 12 2020

A116697 a(n) = -a(n-1) - a(n-3) + a(n-4).

Original entry on oeis.org

1, 1, -2, 2, -2, 5, -9, 13, -20, 34, -56, 89, -143, 233, -378, 610, -986, 1597, -2585, 4181, -6764, 10946, -17712, 28657, -46367, 75025, -121394, 196418, -317810, 514229, -832041, 1346269, -2178308, 3524578, -5702888
Offset: 0

Views

Author

Creighton Dement, Feb 23 2006

Keywords

Crossrefs

Cf. A186679 (first differences).

Programs

  • Haskell
    a116697 n = a116697_list !! n
    a116697_list = [1,1,-2,2]
                   ++ (zipWith (-) a116697_list
                                   $ zipWith (+) (tail a116697_list)
                                                 (drop 3 a116697_list))
    a128535_list = 0 : (map negate $ map a116697 [0,2..])
    a001519_list = 1 : map a116697 [1,3..]
    a186679_list = zipWith (-) (tail a116697_list) a116697_list
    a128533_list = map a186679 [0,2..]
    a081714_list = 0 : (map negate $ map a186679 [1,3..])
    a075193_list = 1 : -3 : (zipWith (+) a186679_list $ drop 2 a186679_list)
    -- Reinhard Zumkeller, Feb 25 2011
    
  • Magma
    A116697:= func< n | (-1)^Floor((n+1)/2)*(1+(-1)^n)/2 -(-1)^n*Fibonacci(n) >;
    [A116697(n): n in [0..50]]; // G. C. Greubel, Jun 08 2025
    
  • Mathematica
    LinearRecurrence[{-1,0,-1,1},{1,1,-2,2},40] (* Harvey P. Dale, Nov 04 2011 *)
  • SageMath
    def A116697(n): return (-1)^(n//2)*((n+1)%2) - (-1)^n*fibonacci(n)
    print([A116697(n) for n in range(51)]) # G. C. Greubel, Jun 08 2025

Formula

G.f.: (1 + 2*x - x^2 + x^3)/((1 + x^2)*(1 + x - x^2)).
a(2*n+1) = A000045(2*n+1) = A001519(n).
a(2*n) = - A128535(n+1). - Reinhard Zumkeller, Feb 25 2011
a(n) = A056594(n) - (-1)^n*A000045(n). - Bruno Berselli, Feb 26 2011
E.g.f.: cos(x) + (2/sqrt(5))*exp(-x/2)*sinh(sqrt(5)*x/2). - G. C. Greubel, Jun 08 2025

A128533 a(n) = F(n)*L(n+2) where F=Fibonacci and L=Lucas numbers.

Original entry on oeis.org

0, 4, 7, 22, 54, 145, 376, 988, 2583, 6766, 17710, 46369, 121392, 317812, 832039, 2178310, 5702886, 14930353, 39088168, 102334156, 267914295, 701408734, 1836311902, 4807526977, 12586269024, 32951280100, 86267571271, 225851433718, 591286729878
Offset: 0

Views

Author

Axel Harvey, Mar 08 2007

Keywords

Comments

Generally, F(n)*L(n+k) = F(2*n + k) + F(k)*(-1)^(n+1): if k = 0 then sequence is A001906, if k = 1 it is A081714.

Examples

			a(4) = 54 because F(4)*L(6) = 3*18.
G.f. = 4*x + 7*x^2 + 22*x^3 + 54*x^4 + 145*x^5 + 376*x^6 + 988*x^7 + ...
		

Crossrefs

Programs

  • GAP
    List([0..30], n -> Fibonacci(2*(n+1)) + (-1)^(n+1)); # G. C. Greubel, Jan 07 2019
  • Magma
    [Fibonacci(n)*Lucas(n+2): n in [0..30]]; // Vincenzo Librandi, Feb 20 2013
    
  • Maple
    with(combinat); A128533:=n->fibonacci(2*n+2)+(-1)^(n+1); seq(A128533(k),k=0..50); # Wesley Ivan Hurt, Oct 19 2013
  • Mathematica
    LinearRecurrence[{2,2,-1}, {0,4,7}, 40] (* Vincenzo Librandi, Feb 20 2013 *)
    a[n_]:= Fibonacci[2n+2] -(-1)^n; (* Michael Somos, May 26 2014 *)
  • PARI
    vector(30, n, n--; fibonacci(2*(n+1)) + (-1)^(n+1)) \\ G. C. Greubel, Jan 07 2019
    
  • Sage
    [fibonacci(2*(n+1)) + (-1)^(n+1) for n in (0..30)] # G. C. Greubel, Jan 07 2019
    

Formula

a(n) = F(2*(n+1)) + (-1)^(n+1), assuming F(0) = 0 and L(0) = 2.
From R. J. Mathar, Apr 16 2009: (Start)
a(n) = 2*a(n-1) + 2*a(n-2) - a(n-3).
G.f.: x*(4-x)/((1+x)*(x^2-3*x+1)). (End)
a(n) = A186679(2*n). - Reinhard Zumkeller, Feb 25 2011
a(-n) = - A128535(n). - Michael Somos, May 26 2014
0 = a(n)*(+4*a(n) + a(n+1) - 17*a(n+2)) + a(n+1)*(-14*a(n+1) + a(n+2)) + a(n+2)*(+4*a(n+2)) for all n in Z. - Michael Somos, May 26 2014

Extensions

More terms from Vincenzo Librandi, Feb 20 2013
Showing 1-4 of 4 results.