cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A186716 Irregular triangle C(n,k): the number of connected k-regular graphs on n vertices having girth at least six.

Original entry on oeis.org

1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 5, 0, 0, 1, 0, 0, 0, 1, 32, 0, 0, 1, 0, 0, 0, 1, 385, 0, 0, 1, 0, 0, 0, 1, 7574, 0, 0, 1, 0, 0, 0, 1, 181227, 1, 0, 0, 1, 0, 0, 0, 0, 1
Offset: 1

Views

Author

Jason Kimberley, Nov 23 2011

Keywords

Comments

Other than the first two rows, each row begins with 0, 0, 1.

Examples

			1;
0, 1;
0, 0;
0, 0;
0, 0;
0, 0, 1;
0, 0, 1;
0, 0, 1;
0, 0, 1;
0, 0, 1;
0, 0, 1;
0, 0, 1;
0, 0, 1;
0, 0, 1, 1;
0, 0, 1, 0;
0, 0, 1, 1;
0, 0, 1, 0;
0, 0, 1, 5;
0, 0, 1, 0;
0, 0, 1, 32;
0, 0, 1, 0;
0, 0, 1, 385;
0, 0, 1, 0;
0, 0, 1, 7574;
0, 0, 1, 0;
0, 0, 1, 181227, 1;
0, 0, 1, 0, 0;
0, 0, 1, 4624501, 1;
0, 0, 1, 0, 0;
0, 0, 1, 122090544, 4;
0, 0, 1, 0, 0;
0, 0, 1, 3328929954, 19;
0, 0, 1, 0, 0;
0, 0, 1, 93990692595, 1272;
0, 0, 1, 0, 25;
0, 0, 1, 2754222605376, 494031;
0, 0, 1, 0, 13504;
		

References

  • M. Meringer, Fast Generation of Regular Graphs and Construction of Cages. Journal of Graph Theory, 30 (1999), 137-146.

Crossrefs

Connected k-regular simple graphs with girth at least 6: A186726 (any k), this sequence (triangle); specific k: A185116 (k=2), A014374 (k=3), A058348 (k=4).
Triangular arrays C(n,k) counting connected simple k-regular graphs on n vertices with girth at least g: A068934 (g=3), A186714 (g=4), A186715 (g=5), this sequence (g=6), A186717 (g=7), A186718 (g=8), A186719 (g=9).
Triangular arrays C(n,k) counting connected simple k-regular graphs on n vertices with girth exactly g: A186733 (g=3), A186734 (g=4).

Extensions

C(36,3) from House of Graphs via Jason Kimberley, May 21 2017