A193361
a(0)=0, a(1)=0; for n>1, a(n) = a(n-1) + (n-3)*a(n-2) + 1.
Original entry on oeis.org
0, 0, 1, 2, 4, 9, 22, 59, 170, 525, 1716, 5917, 21362, 80533, 315516, 1281913, 5383622, 23330405, 104084736, 477371217, 2246811730, 10839493637, 53528916508, 270318789249, 1394426035918, 7341439399397, 39413238225512, 215607783811041, 1200938739448842
Offset: 0
-
[n le 2 select 0 else Self(n-1)+(n-4)*Self(n-2) + 1: n in [1..30]];
-
RecurrenceTable[{a[1]==0,a[2]==0,a[n]==a[n-1]+(n-4) a[n-2]+1},a,{n,30}]
A187830
a(n)=2*a(n-1)+(n+3)*a(n-2)-(n+3)*a(n-3), a(0)=0, a(1)=0, a(2)=1.
Original entry on oeis.org
0, 0, 1, 2, 11, 30, 141, 472, 2165, 8302, 38613, 163144, 780953, 3554402, 17611557, 85145196, 437376337, 2225425454, 11847704869, 63032490312, 347377407169, 1923189664970, 10955002251365, 62881123205556, 369621186243777, 2193173759204902, 13281809346518213
Offset: 0
-
RecurrenceTable[{(3+n)*a[-3+n]+(-3-n)*a[-2+n]-2*a[-1+n]+a[n]==0,a[0]==0,a[1]==0,a[2]==1},a,{n,20}]
FullSimplify[CoefficientList[Series[1/30*E^(-(x^2/2))*((8*Sqrt[2*E*Pi]*Erf[1/Sqrt[2]]-27)*E^(x^2+x)*(x+1)*(x*(x+2)*(x*(x+2)+12)+26)+Sqrt[2*Pi]*E^(x^2+x)*(x+1)*(x*(x+2)*(x*(x+2)+12)+26)*(15*Erf[x/Sqrt[2]]-8*Sqrt[E]*Erf[(x+1)/Sqrt[2]])-16*E^(x^2/2)*(x*(x+2)+2)*(x*(x+2)+9)+30*E^(1/2*x*(x+2))*(x*(x*(x*(x+5)+19)+35)+33)), {x, 0, 20}], x]* Range[0, 20]!]
A220699
a(0)=0, a(1)=0; for n>1, a(n) = a(n-1) + (n-4)*a(n-2) + 1.
Original entry on oeis.org
0, 0, 1, 2, 3, 6, 13, 32, 85, 246, 757, 2480, 8537, 30858, 116229, 455668, 1850417, 7774102, 33679941, 150291472, 689170529, 3244125554, 15649195077, 77287580604, 390271482145, 2013310674830, 10599283282021
Offset: 0
-
[n le 2 select 0 else Self(n-1)+(n-5)*Self(n-2) + 1: n in [1..30]];
-
RecurrenceTable[{a[1]==0, a[2]==0, a[n]==a[n-1] + (n-5) a[n-2] + 1}, a, {n, 40}]
A220700
a(0)=0, a(1)=0; for n>1, a(n) = a(n-1) + (n+3)*a(n-2) + 1.
Original entry on oeis.org
0, 0, 1, 2, 10, 27, 118, 389, 1688, 6357, 28302, 117301, 541832, 2418649, 11629794, 55165477, 276131564, 1379441105, 7178203950, 37525908261, 202624599112, 1103246397377, 6168861375178, 34853267706981, 201412524836788, 1177304020632257, 7018267240899110
Offset: 0
-
[n le 2 select 0 else Self(n-1)+(n+2)*Self(n-2) + 1: n in [1..30]];
-
RecurrenceTable[{a[0] == 0, a[1] == 0, a[n] == a[n-1] + (n+3) a[n-2] + 1}, a, {n, 0, 40}] (* corrected by Georg Fischer, Dec 05 2019 *)
FullSimplify[CoefficientList[Series[1/8*E^(-(x^2/2))*(E^(x^2/2)*(3*Sqrt[2*Pi]*Erf[1/Sqrt[2]]*E^(1/2*(x+1)^2)*(x*(x+2)*(x*(x+2)+8)+10)-6*(x+1)*(x*(x+2)+6)-6*E^(1/2*x*(x+2))*(x*(x+2)*(x*(x+2)+8)+10)+8*E^x*(x*(x*(x+4)+11)+12))+Sqrt[2*Pi]*E^(x^2+x)*(x*(x+2)*(x*(x+2)+8)+10)*(4*Erf[x/Sqrt[2]]-3*Sqrt[E]*Erf[(x+1)/Sqrt[2]])), {x, 0, 20}], x]* Range[0, 20]!] (* Vaclav Kotesovec, Dec 27 2012 *)
nxt[{n_,a_,b_}]:={n+1,b,b+a(n+4)+1}; NestList[nxt,{1,0,0},30][[All,2]] (* Harvey P. Dale, Mar 01 2020 *)
Showing 1-4 of 4 results.
Comments