A186775 Numbers k such that digitsum(2^k) > digitsum(2^(k+1)).
3, 4, 8, 9, 15, 16, 20, 21, 23, 24, 26, 28, 29, 33, 34, 36, 39, 40, 41, 46, 48, 51, 52, 55, 56, 57, 60, 63, 64, 67, 68, 69, 74, 75, 76, 77, 80, 82, 83, 85, 86, 88, 91, 92, 94, 95, 97, 98, 100, 102, 106, 108, 112, 113, 116, 118, 121, 124, 126
Offset: 1
Examples
3 is in the sequence because digitsum(2^3) = 8 > 7 = digitsum(2^4).
Links
- J.W.L. (Jan) Eerland, Table of n, a(n) for n = 1..49688
Crossrefs
Cf. A001370.
Programs
-
Mathematica
DeleteCases[Table[If[Total[Total[IntegerDigits[2^n]]]>Total[IntegerDigits[2^(n+1)]],n,k],{n,0, 10^5}],k] (* J.W.L. (Jan) Eerland, Aug 08 2022 *)
-
Python
from itertools import count, islice, pairwise def ds2(n): return sum(map(int, str(1<
t[1]) print(list(islice(agen(), 60))) # Michael S. Branicky, Aug 08 2022 -
Sage
def is_A186775(n): return sum((2^n).digits()) > sum((2^(n+1)).digits()) # D. S. McNeil, Feb 27 2011
Comments